
Measuring Developers’ Design Contributions in

Evolved Software Projects

Maen Hammad
Department of Software Engineering, The Hashemite University, Zarqa, Jordan

Email: mhammad@hu.edu.jo

Mustafa Hammad
Department of Information Technology, Mu'tah University, AL Karak, Jorda

Email: hammad@mutah.edu.jo

Hani Bani-Salameh, Ebaa Fayyoumi
{Department of Software Engineering, Department of Computer Science and Applications}

The Hashemite University, Zarqa, Jordan

Emails: {hani, enfayyoumi}@hu.edu.jo

Abstract—The work presented in this paper measures the

contribution of developers towards evolved structural

design of software systems. Measuring the contribution of

developers is useful for project managers who manage the

development process. Project managers can empirically

identify developers who made changes to the structural

design and compare among them based on their

contributions. The proposed measures help to understand

the nature of developers’ code changes activities. The

process of calculating the measures is based on the historical

code changes committed by developers. Specifically, code

changes that affect the corresponding UML class diagram

representation of the source code. Both type and amount of

previous changes to class elements are used to measure the

design contributions. The proposed measures are helpful

for open source projects where no detailed information is

available about various developers involved in the

development process. A tool has been developed to

automatically measure the contributions based on archived

historical code changes. The measures have been applied on

two open source projects. Results showed that only small

number of developers have the major design contributions.

Index Terms—Software development and design, software

measurements, software evolution.

I. INTRODUCTION

The development process of software systems is

difficult to manage and control. Many developers with

different skills, experiences, and roles are involved in the

development process. Developers usually maintain

software system via a set of commits, which are

committed over time. As a result, not all developers have

the same contributions in the evolved software projects.

They vary in the number and the type of code changes

that they committed. Some developers make major

contributions, while others’ contributions are minor and

limited to small and specific code changes.

Measuring the contributions of developers helps

project managers to get more information about their

teams and about the nature of their coding activities.

Analyzing design contributions of developers helps in

identifying who are the senior developers and estimating

the amount of their contributions to the evolved structural

design.

Some software developers focus on developing test

cases, while others focus on updating documents. In this

paper, we focus on developers’ contributions that are

related to the design of software systems. The structural

design of software systems is mainly represented by the

UML class diagram of the source code that includes

classes and their relationships. Therefore, the design

elements are classes, methods and relationships between

classes. A relationship between two classes can be a

generalization, an association, or a dependency.

The measures best support open source projects, where

detailed information about each developer is not always

available. Besides, most developers are volunteers from

different countries. This consequently increases the

difficulty of identifying the design contribution of

developers. It is also not an easy task to identify

developers who make the largest contributions to the

structural design of the system.

The question that needs to be addressed is: how to

measure developers’ contributions in the evolved

structural design of software systems?

Measuring the contributions of developers in structural

design provides many benefits to project managers. It

leads to understand the nature of code changes activities

of developers. For example, some developers do most

structural design changes in one or two commits, while

others make their changes in small chunks over longer

period of time. It is important to project managers to

identify developers who have made significant impacts

on the structural design. In particular, they also need to

know the contribution of a specific developer during a

JOURNAL OF SOFTWARE, VOL. 9, NO. 12, DECEMBER 2014 3005

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.12.3005-3011

specific period of time, or active developers in specific

time duration.

Developers, who update class elements of the source

code, contribute in building the structural design of the

system. Measuring developers’ contributions can be

achieved by defining new quantitative metrics based on

analyzing the previous code changes activities of

developers.

The paper proposes two historic-based quantity

measures for developers’ contribution in the evolved

structural design. The first measure reflects the added

design elements by the developer, while second measure

reflects deleted design elements. Code changes in

software repositories are examined to calculate the

contributions. The work is focused on measuring the

contribution of developers to structural design of the

source code which include classes, methods, and

relationships. Minor code changes, such as adding a

condition or renaming a variable, are not considered a

design contribution.

The main research contributions that are addressed in

this paper are:

1. Two historic-based measures for the contributions

of developers towards evolved design.

2. A case study about applying the metrics on two

open source projects.

3. A tool to automatically calculate design

contributions for developers.

The paper is organized as follows. Section 2 explains

the measured design elements. The proposed measures

are described in Section 3. The developed that supports

the measure is presented in Section 4. A detailed case

study on two open source projects is discussed in Section

5. Related work is presented in Section 6 followed by

conclusions and future work.

II. DESIGN CONTRIBUTIONS

Our concern is on measuring contributions of

developers to the structural design of the source code.

The structural design is mainly represented by classes and

their relationships. The contents of classes include

attributes and methods, while relationships include

generalizations, associations and dependencies. The

work presented in this paper is a continuation to our

previous work that is presented in [1]. In [1], developers

who updated design and their knowledge in the updated

design are identified. It is shown that the identified

design knowledge can help in handling high level change

requests. In this paper, we defined measures for the

contribution of developers who updated the structural

design of the system.

The design contribution of a developer is measured by

the total number of added or deleted design elements

committed by the developer during specific time duration.

In general, design contributions can be categorized into

two categories; the addition of new design elements and

the deletion of old design elements.

 The benefits of measuring design contributions for

developers can be summarized as follows:

 Identifying core developers who are important to

the structural design of the system.

 Identifying the contribution of a developer during

specific time duration.

 Understanding the nature of code changes

activities for developers who updated the

structural design.

The measured contributions include the following

changing activities that directly affect the main elements

of classes:

 Creating or deleting classes.

 Adding or deleting methods to/from classes.

 Adding or deleting relationships (generalizations,

associations or dependencies) between classes.

These changes to the classes are extracted from code

changes that are committed by developers. As a result,

any developer committed at least one of the above

changes has a design contribution to the structural design

of the source code.

III. THE PROPOSED MEASURES

This section introduces and explains the proposed

measures for the design contributions of software

developers. Two historical-based measures are proposed

to quantify the detailed design contribution of developers.

The proposed measures are calculated from the historical

code changes committed by developers.

Based on the definition of design contributions

introduced in Section II, we propose two measures. The

first measure is the total number of Added Design

Elements (ADE) by the developer during specific time

duration. The second one is the total number of Deleted

Design Elements (DDE) by the developer during specific

time duration. The following two equations show how

the two measures are calculated for a specific developer

(d).

The first measure (ADE) sums the total number of

added classes (AC), added methods (AM), and added

relationships (AR) that are identified from all extracted

commits C from 1 to n for a specific developer d.

Meanwhile, the DDE is the summation of the total

number of deleted classes (DC), deleted methods (DM),

and deleted relationships (DR) for all extracted n

commits of the developer.

One important factor in calculating the contribution is

the weight of design change. For example, a developer

who added three classes may be considered to have more

3006 JOURNAL OF SOFTWARE, VOL. 9, NO. 12, DECEMBER 2014

© 2014 ACADEMY PUBLISHER

contributions to the design than the one who added three

methods. Even if the ADE for both developers is three,

adding a class may have more impact than adding a

method. To include weights in ADE and DDE, each

summation is multiplied by a weight value (w1, w2, or

w3) such that:

These weights are determined by project managers to

rank design contributions based on their types. For

example, weight values could be set as (w1=0.6, w2=0.3,

w3=0.1). These weight values give the highest design

contributions to added/deleted classes then added/deleted

methods followed by added/deleted relationships. In this

case, the contribution of adding one class is counted as

twice compared to adding one method and six times

compared to adding a relationship.

Another option is to consider an equal weight to all

design contributions regardless of their types and their

impact on the whole design system. In this case, weights

are set to be equal to 0.33+ or simply ignore the weight

concept.

The process of finding design contributions for

developer d in project P is calculated as follows:

1. A set of commits are extracted from the software

repository of project P.

2. The set of commits Cn that are committed by

developer d are identified from the extracted

commits in Step 1.

3. All added/deleted classes, methods and

relationships are identified from the set of

commits Cn.

4. The total number of added design elements

identified in Step 3 is reported as the ADE design

contribution value for developer d.

5. The total number of deleted design elements

identified in Step 3 is reported as the DDE design

contribution value for developer d.

The proposed measures are based on counting the

number of added and deleted design elements across all

commits. All added and deleted classes, methods and

relationships (generalization, association, or dependency)

are counted. For a specific developer, all his commits for

a specific period of time are extracted. Then, code

changes in these commits are analyzed to identify

commits that have design changes. In the next step, the

number of added and deleted design elements per commit,

with design changes, is counted. Finally, the sum of all

added design elements is reported as ADE value and the

sum of all deleted design elements is reported as DDE

value.

For example, consider a developer who committed

three commits during a month. In the first commit, he

created a new class with four methods. In the second

commit, he deleted an association relationship. In the

third commit, the developer added another new method to

some class. Therefore, his design contribution is six

based on the ADE measure because he added six new

design elements (one class + four methods + one method).

Based on the DDE measure his contribution is one

because he deleted only one design element (an

association) from the design.

Combining ADE and DDE together helps in

determining the total design contribution of a specific

developer to design. Consequently, the summation of the

two measures ADE and DDE gives the Total Design

Contribution (TDC) of a developer d.

TDC(d) = ADE (d) + DDE (d)

TDC represents the total number of design changes

that are committed by a certain developer regardless of

the change type.

Another variation to TDC is the measuring of Actual

Total Design Contribution (ATDC) for certain developer.

ATDC is counted by excluding any design element that is

added and then deleted by the same developer. This

design element presents an intersected element between

the ADE(d) and DDE(d). Consequently, this intersected

element represents an overlap that is counted twice.

Therefore, it has to be excluded once. This is because

that design element is not part of the current status of the

design anymore. For instance, suppose a developer has

added one method and later he deleted it. This change is

counted zero based in ATDC and it is counted two based

on TDC. The summation of the two measures ADE and

DDE excluding the Overlap Design Elements (ODE)

gives the Actual Total Design Contribution (TDC) of a

developer d.

TDC(d) = ADE (d) + DDE (d) – ODE (d)

Our focus in this paper is on measuring TDC for

developers, which reflects the amount of their changes

activities they applied.

Since ADE and DDE are numbers, it is also useful to

show the total design contribution of a developer as a

percentage of all other developers. The total design

contribution of a specific developer is divided by the total

number of design contributions committed by all

developers. The result of the division represents the

Percentage Total Design Contribution (PTDC) for the

developer. The PTDC for developer d among n

developers who involved in the development process

during a specific period of time is calculated as shown in

the following equation:

IV. TOOL SUPPORT

A tool has been developed to automatically find the

design contribution for developers. The tool supports

both extracting commits, and measuring design

contributions (ADE and DDE) based on specific weights

determined by the user. The tool is named Contributor.

Contributor finds the contributions values of a specific

developer. Users can determine the URL of the open

source repository, the time duration of the history, the

weights values, and the developer’s ID. Then, the

JOURNAL OF SOFTWARE, VOL. 9, NO. 12, DECEMBER 2014 3007

© 2014 ACADEMY PUBLISHER

contribution is automatically calculated and shown to the

user.

Contributor extracts commits from the determined

repository and analyzes code changes of the extracted

commits by using another tool called srcTracer [2, 3].

The srcTracer tool automatically analyzes C++ code

changes to identify changes to design. The tool identifies

added/deleted classes, methods, and relationships

between classes.

The design contributions for all developers or a group

of developers who are involved in the development

process are calculated by the tool during predefined time

duration. Also, developers can be ranked based on their

design contributions (ADE, DDE or TDC). The tool is

able to calculate the percentage total design contribution

(PTDC) and actual total design contribution (ATDC) for

a specific developer or a group of developers.

V. CASE STUDY

We applied the proposed contribution measures, by

using the Contributor tool, on two C++ open source

projects. The results are analyzed and discussed in this

section. The two studied open source projects are:

1. The quantitative finance library QuantLib

(www.quantlib.org)

2. The cross-platform GUI library wxWidgets

(www.wxwidgets.org).

Subset of commits has been extracted from each of the

two projects. The goal of the study is to investigate the

following issues:

 What is the design contribution of a specific

developer?

 Who are the developers with major design

contributions?

 Do all developers vary in their design

contributions?

The extracted commits from the two projects have

been analyzed by the Contributor tool to calculate the

design contributions for all developers who committed

the extracted commits. Tables 1 and 2 show the top ten

developers of wxWidgets and QuantLib with the design

contribution values for each developer. The contribution

is measured by ADE and DDE measures. The total

design contribution (TDC) is shown for each developer in

the last column which is used to rank developers. The

weights are ignored in calculating ADE and DDE (i.e. all

design changes have the same weight).

For example, in wxWidgets, developer VZ is ranked

first based on his total design contribution. He updated

the design by adding 3994 (class, method or relationship)

and deleting 1729 (class, method, or relationship). The

total number of added and deleted design elements by VZ

is 5723 (3994+1729). Tables 1 and 2 also show that

developers vary in their contributions to the evolved

structural design.

It is observed that most structural design changes are

applied by small number of developers. To investigate

this observation, we calculated the cumulative design

contribution of top five developers of wxWidgets and top

three developers of QuantLib. Five developers of

wxWidgets represent 20% (5/25) of all developers who

contributed to the structural design. Also, the top three

developers of QuantLib represent 20% (3/15) of

developers with design contributions. The cumulative

design contributions were calculated by summing the

total design contribution (TDC) for each developer. Top

developers mean developers with highest contributions

values. The cumulative design contribution for the top

developers of the two projects is shown in Table 3.

TABLE I.

DESIGN CONTRIBUTIONS FOR TOP TEN DEVELOPERS OF QUANTLIB

Developer ADE DDE
TDC

(ADE+DDE)

Lballabio 5758 624 6382

Nando 2541 993 3534

fdv1 1285 59 1344

Giorfa 711 194 905

Klausspanderen 559 57 616

Markjoshi 348 0 348

Chiforna 300 22 322

Kmanzoni 234 51 285

Cduminuco 182 48 230

Mariopucci 165 30 195

TABLE II.

DESIGN CONTRIBUTIONS FOR TOP TEN DEVELOPERS OF WXWIDGETS

Developer ADE DDE
TDC

(ADE+DDE)

VZ 3994 1729 5723

JS 2478 155 2633

RR 1701 575 2276

SC 1088 390 1478

VS 861 427 1288

RD 1015 90 1105

ABX 669 386 1055

BIW 491 135 626

MW 270 108 378

KO 177 37 214

TABLE III

CUMULATIVE CONTRIBUTIONS FOR TOP FIVE DEVELOPERS OF

WXWIDGETS AND TOP THREE DEVELOPERS OF QUANTLIB

wxWidgets TDC QuantLib TDC

Top 5

developers

13398 (76%) Top 3

developers

11260

(77%)

Others

developers

4242 (24%) Others

developers

3318

(23%)

We found that the top five developers of wxWidgets,

contributed by adding and deleting 13398 design

elements which represent 76% of all updated elements by

all developers. The same observation is valid on

QuantLib developers. Three developers only contributed

about 77% of design changes in QuantLib project. These

top developers may be considered as the core designers of

the system because of their large contributions.

3008 JOURNAL OF SOFTWARE, VOL. 9, NO. 12, DECEMBER 2014

© 2014 ACADEMY PUBLISHER

Figure 1. Distribution the percentages of total design contributions

(PTDC) of wxWidgets and QauntLib developers

Fig. 1 visualizes the PTDC values of all developers

based on the extracted commits. Developers with no

design contributions are ignored. The PTDC of each

developer is presented by a pie in the chart. The

distribution of PTDC values for all developers is shown

for both projects. The charts show that most developers

have minor design contributions towards evolved

structural design. For example, in QuantLib project

shown in Fig. 1, only one developer contributed more

than 25% of design changes. The same observation is

applied for wxWidgets. Only two developers have

contributed about 50% of all design changes. In

summary, only small number of developers contributes

the most changes activities towards evolved structural

design. Project managers should give great attention to

those developers due to their importance to the

organization or to the development process.

VI. RELATED WORK

Ramil and Lehman [4] described some models that

predict effort as a function of a suite of metrics of

software evolution. A close work to ours is proposed by

Gousios et al. [5]. They proposed a model for evaluating

developer contribution. The model takes advantage of

software development repositories to extract contribution

indicators. The model assigns a weight to each action

type by the developer. The approach measures many

development activities but not contributions related to the

structural design of source code. Di Penta and German [6]

introduced a method to track the names of contributors,

including those explicitly listed as copyright owners from

licensing statements in source code file. Kpodjedo et al.

[7] investigated the usefulness of elementary design

evolution metrics to identify defective classes. The

metrics include the numbers of added, deleted, and

modified attributes, methods, and relations. The metrics

are used to recommend a ranked list of classes likely to

contain defects for a system.

Many studies as in [8, 9] showed that most of code

changes are contributed by small number of developers.

Bird et al. [10] mined e-mail archives to analyze the

communication and co-ordination activities of the

participants. In our work, we showed that most structural

design changes are made by small number of developers.

Del Rosso [11] used collaborations and interactions

between knowledge-intensive software developers to

build a social network. Sowe et al. [12] presented a

framework for investigating Free and Open Source

Software (F/OSS) developers’ activities in both source

code and mailing lists repositories. Kagdi et al [13]

presented an approach with a tool named xFinder. The

approach recommends expert developers by mining

version archives of a software system. The approach is

based on the idea that the developers who contributed

more in changing a specific part of source code in the

past are likely to best assist in its current or future

changes. The approach is used to recommend experts for

files. The approach has been used in [14, 15] to

recommend a ranked list of expert developers to assist in

the implementation of software change requests.

Ben et al. [16] examined the contribution

characteristics of developers in open source environment

based on visual analysis, and presented approaches from

three aspects-influencing factors, time characteristics and

region characteristics. They found that the code which

newcomers started to contribute with more people

engaged in would lead to less contribution in some degree.

They also found that there's a relation between

developers' early and later period contribution.

Oosterman et al. [17] introduces a tool named EVOJAVA

for extracting static software metrics from a Java source

code repository. For each version of a program,

EVOJAVA builds a comprehensive model of the

semantic features described by Java code, and tracks the

identity of these features as they evolve through

sequential versions. This allows software metrics to be

recorded over time. Eden and Mens [18] introduced the

notion of evolution complexity and demonstrated how it

can be used to measure and compare the flexibility of

programming paradigms, architectural styles and design

patterns. Canfora et al. [19] [20] investigated the

relationship of source code complexity and

disorganization. They used three factors which includes

the number of contributors that modified the source code

file. They found that entropy tends to increase with the

number of file committers.

Our work differs in the type of the measured

developer’s activities. We measure the contribution of

developers based on their updates on the structural design

of the system.

QuantLib

wxWidgets

JOURNAL OF SOFTWARE, VOL. 9, NO. 12, DECEMBER 2014 3009

© 2014 ACADEMY PUBLISHER

VII. CONCLUSIONS AND FUTURE WORK

Two measures have been proposed to measure the

contribution of software developers in the evolved

structural design of software systems. The presented

measures consider only code changes that impact the

corresponding UML class diagram representation of the

source code. The measures are based on mining software

repositories to analyze the historical code changes for

developers. The number of updated design elements in

the structural design is used for calculating the

contributions. Measuring design contributions for

developers provide useful information about the amount

of contributions committed by developers to the structural

design. The measures help project managers in locating

developers who have major contributions to the structural

design and empirically identify the amount of their

contributions. The proposed contribution measures have

been applied on two open source project. Results show

that developers vary in their design contributions. It is

also shown that very small number of developers

contributes in most of design changes.

The future work aims to introduce new metrics for

developers that are based on different code activities.

Possible measurements that are under investigation

include the number of added/deleted packages and the

amount of code refactrings. We are currently working on

defining general metrics to measure the evolution of

software systems.

REFERENCES

[1] M. Hammad, M. Hammad and H. Bani-Salameh,

“Identifying Designers and their Design Knowledge,”

International Journal of Software Engineering and Its

Applications, vol. 7, no. 6, 2013, pp. 277-288.

[2] M. Hammad, M.L. Collard and J.I. Maletic,

“Automatically Identifying Changes that Impact Code-to-

Design Traceability,” Proc. 17th IEEE International

Conference on Program Comprehension (ICPC’09), 2009,

pp. 20-29.

[3] M. Hammad, M.L. Collard and J.I. Maletic “Automatically

Identifying Changes that Impact Code-to-Design

Traceability during Evolution,” Software Quality Journal

2010, pp. (under review).

[4] J.F. Ramil and M.M. Lehman, “Metrics of Software

Evolution as Effort Predictors - A Case Study,” Proc.

Proceedings of the International Conference on Software

Maintenance (ICSM'00), 2000.

[5] G. Gousios, E. Kalliamvakou and D. Spinellis, “Measuring

Developer Contribution from Software Repository Data,”

Proc. Proceedings of the 2008 international working

conference on Mining software repositories (MSR'08) 2008,

pp. 129-132.

[6] M.D. Penta and D.M. German, “Who are Source Code

Contributors and How do they Change?,” Proc. 16th

Working Conference on Reverse Engineering, 2009.

[7] S. Kpodjedo, F. Ricca, P. Galinier, Y.-G. Guéhéneuc and

G. Antoniol, “Design evolution metrics for defect

prediction in object oriented systems,” Empirical Software

Engineering, vol. 16, no. 1, 2011, pp. 141-175.

[8] J. Geldenhuys, “Finding the Core Developers,” Proc.

Proceedings of the 36th EUROMICRO Conference on

Software Engineering and Advanced Applications

(SEAA'10), 2010, pp. 447-450.

[9] D.M. German, “A study of the contributors of PostgreSQL,”

Proc. Proceedings of the 2006 international workshop on

Mining software repositories (MSR'06), 2006.

[10] C. Bird, A. Gourley, P. Devanbu, M. Gertz and A.

Swaminathan, “Mining Email social networks,” Proc.

International Workshop on Mining Software Repositories

(MSR ’06), 2006, pp. 137–143.

[11] C.D. Rosso, “Comprehend and analyze knowledge

networks to improve software evolution,” Journal of

Software Maintenance and Evolution: Research and

Practice (JSME), vol. 21, no. 3, 2009, pp. 189–215.

[12] S.K. Sowe, S. Ioannis, S. Ioannis and A. Lefteris, “Are

FLOSS developers committing to CVS/SVN as much as

they are talking in mailing lists? Challenges for Integrating

data from Multiple Repositories,” Proc. 3rd Workshop on

Public Data about Software Development (WoPDaSD

2008), 2008.

[13] H. Kagdi, M. Hammad and J.I. Maletic, “Who can help me

with this source code change?,” Proc. IEEE International

Conference on Software Maintenance (ICSM’08), 2008, pp.

157–166.

[14] H. Kagdi, M. Gethers, D. Poshyvanyk and M. Hammad,

“Assigning change requests to software developers,”

JOURNAL OF SOFTWARE: EVOLUTION AND

PROCESS, vol. 24, no. 1, 2012, pp. 3–33.

[15] H. Kagdi and D. Poshyvanyk, “Who can help me with this

change request?,” Proc. The 17th IEEE International

Conference on Program Comprehension (ICPC’09), 2009,

pp. 273–277.

[16] X. Ben, S. Beijun and Y. Weicheng, “Mining Developer

Contribution in Open Source Software Using Visualization

Techniques,” Proc. Third International Conference on

Intelligent System Design and Engineering Applications

(ISDEA'13), 2013, pp. 934 - 937.

[17] J. Oosterman, W. Irwin and N. Churcher, “EvoJava: A

Tool for Measuring Evolving Software,” Proc. Thirty

Fourth Australasian Computer Science Conference

(ACSC2011), 2011.

[18] A.H. Eden and T. Mens, “Measuring Software Flexibility,”

IEE Software, vol. 153, no. 3, 2006, pp. 113–126.

[19] G.C. Canfora, L.; Di Penta, M.; Pacilio, F., “An

Exploratory Study of Factors Influencing Change Entropy,”

Proc. Proceedings of the IEEE 18th International

Conference on Program Comprehension (ICPC'10), 2010,

pp. 134,143.

[20] G. Canfora, L. Cerulo, M. Cimitile and M.D. Penta, “How

changes affect software entropy: an empirical study,”

Empirical Software Engineering, vol. 19, no. 1, 2014, pp.

1-38.

Maen Hammad is an Assistant Professor in Software

Engineering Department at The Hashemite University, Jordan.

He completed his Ph.D. in computer science at Kent State

University, USA in 2010. He received his Master in computer

science from Al-Yarmouk University—Jordan and his B.S. in

computer science from The Hashemite University—Jordan. His

research interest is Software Engineering with focus on software

evolution and maintenance, program comprehension and mining

software repositories.

Mustafa Hammad is an Assistant Professor at Information

Technology department in Mu’tah University, Al Karak -

Jordan. He received his PhD. in computer science from New

Mexico State University, USA in 2010. He received his Masters

degree in computer science from Al-Balqa Applied University,

Jordan in 2005 and his B.Sc. in computer science from The

Hashemite University, Jordan in 2002. His research interest is

3010 JOURNAL OF SOFTWARE, VOL. 9, NO. 12, DECEMBER 2014

© 2014 ACADEMY PUBLISHER

Software Engineering with focus on static and dynamic analysis

and software evolution.

Hani Bani-Salameh is an Assistant Professor in the Software

Engineering Department at The Hashemite University since

2011. He holds a B.Sc. in Computer Science (1995), a M.Sc. in

Computer Science (2007) from New Mexico State University

(NMSU), and a Ph.D. in Computer Science (2011) from the

University of Idaho (UI). His research interests include software

engineering, computer supported cooperative work (CSCW),

software development environments, collaborative software

development in virtual environments, and social networking and

social media. He studies social interactions in social networks

and online environments, including Facebook and SourceForge.

Ebaa Fayyoumi received the B.Sc. degree from The Hashemite

University, Zarqa, Jordan, in 2000, the M.Sc. degree from the

University of Jordan, Amman, Jordan, in 2002, and the Ph.D.

degree from Carleton University, Ottawa, ON, Canada, in 2008.

She has been with the Faculty of Prince Hussein Bin Abdalla II

for Information Technology, The Hashemite University, since

November 2008, where she is currently an Assistant Professor

at the Computer Science Department. Her current research

interests include statistical syntactical pattern recognition,

micro-aggregation techniques, secure statistical databases,

automata learning, applied algorithm, mobile application, data

mining and e-learning. She got many awards during her

academic life; one of them is Carleton University Medal on

outstanding graduate work in 2008.

JOURNAL OF SOFTWARE, VOL. 9, NO. 12, DECEMBER 2014 3011

© 2014 ACADEMY PUBLISHER

