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Abstract—The detection of model clone has been an active 
research area in recent years. The closed clone instances 
contain all the information of model clones so they can 
ensure the completeness of detection results essentially. In 
order to improve the degree of completeness in clone 
detection, a novel model clone detection algorithm named 
CL_MCD (Closed Model Clone Detection) is proposed. 
CL_MCD focuses on exactly matched clones and aims to 
find all the closed clone instances. The main innovation of 
CL_MCD is in the detection phase. Every time after finding 
a new node pair with the same label in the breadth-first 
search of model graph, CL_MCD transforms all the node 
pairs into a clone pair, and puts the clone pair into a set that 
contains all the candidate clone instances if its size is greater 
than or equal to the size of minimum clone. Then every 
candidate clone instance is compared with all the others in 
the set. If a candidate clone instance is one part of any other 
instance, it is deleted. After the filtering, redundant clone 
instances are removed and only the closed clone instances 
are kept in the set. Theoretical analysis and experimental 
studies demonstrate that CL_MCD has higher degree of 
completeness than CloneDetective.  
 
Index Terms—Simulink model, model clone, closed model 
clone, model clone detection 
 

I.  INTRODUCTION 

In recent years, model-driven software development 
(MDSD) has become a popular way of creating software 
systems [1,2]. Developers can define software systems on 
a higher level of abstraction by MDSD. Matlab/Simulink 
is a popular Model-Driven Engineering tool for designing 
and modeling software in many products from small 
electronic control software to large-scale flight control 
systems [3]. Models are the collection of logical entities 
which describe a system at multiple levels of abstraction 
and from a variety of perspectives. As models are used to 
generate code, they can be regarded as a higher level 
programming language. 

Previous studies in [4] showed that most of the reasons 
leading to clones in code-based development are also 
valid for MDSD. Therefore, it is not surprising that 
simulink models often contain clones. Model clones are 
taken as the exactly or similar matched fragments in 
simulink models [5]. Similar to traditional code clones, 
model clones in simulink models require additional 

efforts for maintenance and management in most cases. 
For example, changes to one place must be carried out 
multiple times for all occurrences of clones. Thus, the 
identification and elimination of model clones is 
important to improve the maintainability of the system 
under development. Moreover, in the case of product 
lines construction, it is a core requirement to identify the 
reusable pieces of functionality and integrate them into a 
library for future reuse. 

The detection of model clones has been an active area 
of research in recent years. There exist several 
approaches to detect clones in MDSD [4-9].Among them, 
CloneDetective [4] which is included in the open-source 
tool of ConQAT represents a classical clone detection 
algorithm. However, it has low degree of completeness in 
detection because the CloneDetective mainly focuses on 
the maximal clones and cannot reveal hidden clone 
instances which usually have smaller size and are covered 
by larger clone instances. 

This paper presents a novel clone detection algorithm, 
i.e., CL_MCD (Closed Model Clone Detection), for 
exactly matched clones in Matlab/Simulink models. The 
core idea of CL_MCD is that it aims to find all of the 
closed clone instances in the phase of detection. 
Fundamentally, the closed clone instances can ensure the 
completeness of detection results because they contain all 
the information of exact model clones. Besides, 
theoretical and experimental studies also demonstrate that 
CL_MCD can find some hidden clones that 
CloneDetective has failed to detect. Therefore, its 
completeness is better than CloneDetective. Moreover, its 
running time is reasonable and acceptable. 

The remainder of this paper is organized as follows. In 
section 2, we briefly describe MATLAB/Simulink graph 
and model clone representation. The process of model 
clone detection and clone detection problem are presented 
in section 3. We analyze limitations of CloneDetective 
and present CL_MCD in section 4. Section 5 performs 
practical evaluations of the detection algorithm CL_MCD 
and compares it against CloneDetective. Related works 
are discussed in section 6. Conclusion and future works 
appear at last section. 

II.  MATLAB/SIMULINK GRAPH AND MODEL CLONE 
REPRESENTATION 
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Figure 1.   Clone between discrete saturated PI-controller and PID-controller [4] 

MATLAB is a software package provided by The 
MathWorks Inc [10]. It can be extended by several 
toolboxes used for control systems, signal processing and 
optimization. Simulink is one of toolboxes that provide a 
graphical environment for designing, modeling and 
simulating dynamic systems via data flow graphs. 
Simulink also offers an extensive library of predefined 
function and parameter blocks for linear, non-linear, 
discrete and hybrid systems [11]. 

In Simulink, users can construct systems models 
graphs by using instances of these function blocks that 
are connected to each other by signal flow lines. A block 
instance can be associated with a set of attributes 
depending on the block’s type. With Real-Time 
Workshop (RTW) tools, systems models graphs can be 
used to generate source code of C or C++ etc. They can 
be regarded as a higher level programming language. 
Figure 1 shows an example of a Simulink model of two 
controllers [4]. The shapes (squares, triangles, circles) 
represent function blocks and the lines between those 
blocks represent the flow of data. 

An important feature of Simulink is that users can 
combine sets of blocks and lines into subsystems and 
create higher-level domain abstractions like a PID 
controller [12]. This makes it possible to create very large 
and complex model without losing the overview. Models 
are partitioned into a layered hierarchy by using 
subsystems. If a subsystem shall be used at multiple 
locations, it should be externalized as a library element. 
To use the functionality provided by a library element, a 
model needs to reference the library element together 
with a set of input parameters. 

Previous studies showed that with the nature of using 
graphical editors for models, it is not surprising that 
clones in simulink models often exist [4]. Similarly to the 
definition of traditional code clones, the exactly or similar 
matched fragments in simulink models are called model 
clones. For example, the two colored parts in Figure 1 are 
clones of each other, which are usually created by a 
sequence of copy, paste, and modify steps. Although 
sometimes clones are unavoidable and can't be eliminated 
completely, in most cases clones in simulink models 
require additional efforts for maintenance and 
management [5]. For example, changes to one place must 
be carried out multiple times for all occurrences of clones. 
Thus, in order to improve the maintainability of the 
system under development, it is useful to identify and 
eliminate model clones. Moreover, in the case of product 
lines construction, it is a core requirement to identify the 
reusable pieces of functionality and integrate them into a 
library. 
 

III.   MODEL CLONE DETECTION 

This section briefly describes the process of model 
clone detection at first, and then defines the clone 
detection problem for MATLAB/Simulink models. 

A.  The Process of Model Clone Detection 
Generally clones are detected through three phases [4]: 

preprocessing and normalization, detection, and 
postprocessing. Figure2 shows the general process of 
model clone detection for MATLAB/Simulink models. 

 
Figure 2.  The process of model clone detection 

In the process of model clone detection, simulink 
models must be preprocessed and normalized at first. The 
result of this step is a labeled and directed multi-graph 
with G= (V, E, L). The detection phase is the core content 
in the model clone detection. It works on the labeled 
graph produced during the previous phase. The main task 
of this phase is generating candidate clone instances, and 
then grouping them into clone groups. Postprocessing 
maps the clone results found at the detection phase with 
the simulink models. In order to analyze and manage the 
results of clone detection easily, we should generate 
readability clone detection report and show the results of 
clone detection in an intuitive, easy to accept and 
understandable way.  

B.  Formulation on the Clone Detection Problem  
Simulink models can be represented as a labeled and 

directed multi-graph with G= (V,E,L) after preprocessing 
and normalization. Now let us formulate the clone 
detection problem for MATLAB/Simulink models. 

Definition 1(Clone Instance) 
A clone instance is defined as a weakly connected sub-

graph 1g of the model graph G= (V,E,L) that is isomorphic 
or approximate to at least one other sub-graph 2g of 
G with regard to the labeling function L .  

Definition 2(The Support of Clone Instance) 
The support of clone instance g is denoted as sup(g): 

sup(g)=|M|, and ,g M∈ where |M| is the number of clone 
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instances in the clone group M that contain the clone 
instance g.  

Definition 3(Closed Clone Instance) 
A clone instance g in clone group M is called closed 

clone instance if and only if there are not exist a clone 
instance g′ in another clone group N, such that the 
following conditions hold: ( ) ( )g g sup g sup g′ ′⊂ ∧ = . 

The definition of closed clone instance is similar to the 
closed frequent sub-graph in graph mining. Closed clone 
instances contain all the information of model clones and 
they can ensure the completeness of detection result 
essentially [13]. 

Definition 4(Exact Clone Pair) 
Two weakly connected and directed sub-graphs 

G1=(V1,E1) and G2=(V2,E2) of G=(V,E,L) are considered 
exact clone pair if they are isomorphic with regard to the 
labeling function L, and V1, V2 aren’t overlapping. The 
clone in a exact clone pair is usually called exact clone. 

Definition 5(Clone Group) 
A clone group is a set that contains at least two clone 

instances and any two clone instances in the same clone 
group form a clone pair. 

Definition 6(Covered Group) 
A clone group M is said to be covered by another 

group N if and only if 1 ,g M∀ ∈ 2 1 2( ) ( )g N g g∃ ∈ ∧ ⊆ . 
The g1 is a clone instance in clone group M.The g2 is a 
clone instance in clone group N.  If a clone group M is covered by another group N, M is 
redundant because the information of its member clones 
is also contained in the group N. In this case, M can be 
deduced from N.  

IV.  CLOSED MODEL CLONE DETECTION ALGORITHM 
(CL_MCD) 

This section provides an overview of the exact clone 
detection algorithm CloneDetective at first, then analyzes 
the limitations of CloneDetective and presents a closed 
model clone detection algorithm of CL_MCD that base 
on CloneDetective captions 

A.  CloneDetective  
CloneDetective is a classical model clone detection 

algorithm of ConQAT tool [4] in MDSD. It was the first 
proposed exact model clone detection algorithm that 
enumerates all maximal exact clones in MATLAB/ 
Simulink models. The process of model clone detection 
in CloneDetective is the same with the description in 
section 3.1. 

The result of the preprocessing and normalization 
phase is a labeled, directed multi-graph with G=(V,E,L). 
After preprocessing and normalization, CloneDetective 
runs in two distinct steps in the phase of detection: firstly, 
all clone pairs are identified; secondly, clone pairs are 
clustered to form clone groups. 

In the first step, the algorithm enumerates all pairs of 
clones, i.e., all pairs of sub-graphs that are isomorphic. 
To do that, the algorithm iterates over all possible pairs of 
nodes and proceeds in a breadth-first search manner from 
there. The authors do not use an exhaustive search. 

Instead, they use a heuristic to reduce the time 
complexity. While estimate the similarity of a pair of 
nodes, the heuristic reference the normalization labels as 
well as the structure of the neighborhood of both nodes. 
Moreover, the heuristic play a major role to quickly find 
other pairs of nodes that can be combined with the 
current pair of nodes to a clone pair in the course of the 
algorithm iterates over all possible pairings of nodes. In 
the second step, the CloneDetective provides a method to 
combine clone pairs to a clone class. It uses a union-find 
structure to build clone groups. More information about 
CloneDetective can be found in [4].

 
B.  Closed Model Clone Detection Algorithm of 
CL_MCD

 
Although CloneDetective is the classical clone 

detection algorithm, it has several limitations [4,5]. The 
most important limitation is its low degree of 
completeness in detection. As CloneDetective always 
tries to build maximal clones, some hidden clone 
instances and clone groups are not reported. Those hidden 
clones are also valuable to construct reusable models 
library in the way of model-driven software development 
and the completeness of clone detection results in 
CloneDetective will decrease if without them. In this 
section, we present CL_MCD that can detect the hidden 
clone, as CloneDetective has failed to detect. 

Firstly we present an example about some hidden 
clone groups and clone instances that CloneDetective has 
failed to detect in Figure 3. The clone instances are 
represented by geometric figures of rectangles, circles, 
and triangles. In Figure 3(a), CloneDetective does not 
find the star shaped clone group S=(s1,s2,s3) whose 
elements have smaller sizes and only reports three clone 
groups R=(r1,r2), T=(t1,t2) and C=(c1,c2) (represented as 
shapes). Because CloneDetective always tries to build 
maximal clones, it only can find clone pairs with the sizes 
as large as possible, and smaller clone pairs are not 
reported if each clone pair is covered by a bigger clone 
pair. For example, the case starting from nodes in stars of 
s1 and s2 identifies the rectangles clone group R=(r1,r2), 
the case starting from nodes in stars s2 and s3 identifies 
the circles clone group C=(c1,c2), and the case starting 
from nodes in stars s1 and s3 identifies the triangle clone 
group T(t1,t2). 

   
(a)                                                   (b) 

Figure 3.   (a) Example that star shaped clones are not reported (b) 
Example that star shaped clones are reported partly 

According to the definition 3 and 6 in section 3.2, it is 
easy to know that the clone instances of s1, s2, s3 in clone 
group S=(s1,s2,s3) are closed clone instances, and the 
clone group S=(s1,s2,s3) is not covered by clone groups R, 
T, C. Therefore, they should also been reported as clone 
group S=(s1,s2,s3). However, the clone group S=(s1,s2,s3) 
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is lost in the detection of CloneDetective. Evidently, the 
completeness of clone detection results in CloneDetective 
will decrease. 

The same as the analysis of Figure 3(a), 
CloneDetective reports three clone groups R=(r1,r2), 
T=(t1,t2) and S=(s2,s3) (represented as shapes) in Figure 
3(b): the case starting from nodes in stars of s1 and s2 
identifies the rectangle clone group R=(r1,r2), the case 
starting from nodes in stars s1 and s3 identifies the 
triangle clone group T=(t1,t2), and the case starting from 
nodes in star s2 and s3 identifies the star clone group 
S=(s2,s3). It is found that the clone instance s1 is lost. 
However, the clone instance s1 also has clone 
relationship with clone instance s2 and s3. Thus we should 
report clone group S=(s1,s2,s3) instead of S=(s2,s3). In this 
case, although there aren’t clone groups be lost, some 
clone instances are still lost. It means that for 
CloneDetective, the completeness of clone detection will 
decrease. 

Through above analysis, we can see the hidden clones 
of s1, s2, s3 in Figure 3(a) and the hidden clone s1 in 
Figure 3(b) are closed clone instances and they are also 
useful for showing all the information of model clones. 
However, those valuable hidden clones are discarded by 
CloneDetective because they are not maximal clones. So 
closed clone instance is better than maximal clone in the 
aspect of completeness of model clone detection. 
Therefore, we had better find all the closed clone 
instances instead of maximal clones in model clone 
detection. 

Based on the above findings, we present CL_MCD, a 
model clone detection algorithm that has better 
performance in the aspect of completeness than 
CloneDetective. Figure 4 presents the process of clone 
detection with algorithm CL_MCD.  

 
Figure 4.  The process of clone detection with CL_MCD 

The core of innovation in CL_MCD is at the step of 
generating all the candidate clone instances in Figure 4. 
In order to find all the closed clone instances, the breadth-
first search of model graph is used. Every time after 
finding a new node pair with the same label, CL_MCD 
transforms all the current node pairs into a clone pair, and 
puts this clone pair into a set that contains all the 
candidate clone instances if its size is greater than or 
equal to the size of minimum clone. CL_MCD aims to 

find closed clone instance and can find the valuable 
hidden clone that CloneDetective has failed to detect, 
such as the clone group S=(s1,s2,s3) in Figure 3(a), and 
the clone instance s1 in Figure 3(b). CL_MCD has higher 
degree of completeness than CloneDetective in clone 
detection. 

The Pseudo code of CL_MCD is presented in Figure5. 
D denotes a set of already visited node pairs. S is a set of 
nodes seen in the current breadth-first search. Set C 
contains all node pairs of the current clone. CIS is a set 
containing all candidate clone instances. C_CIS is a set 
containing all closed clone instances. CG denotes the set 
of clone groups. 

CL_MCD also detects clones through three phases: 
preprocessing, detection and postprocessing. Let’s 
analyze each phase of CL_MCD now. Generally, 
simulink models must be preprocessed and normalized at 
first in the process of model clone detection, and the 
result of the preprocessing phase is a labeled, directed 
multi-graph G=(V,E,L) where a node represents a block 
and an edge represents a signal connection line. This 
preprocessing phase is carried out in the same manner as 
CloneDetective. 

Input: Model graph G=(V,E,L) 
Output: Clone Group Set CG 

1. :D = ∅ , :CIS = ∅ , _ :C CIS = ∅  
2. for each ( , )u v V V∈ × with ( ) ( )u v L u L v≠ ∧ =  do 

  if { },u v D∉ then 

3.     Queue { }: ( , )Q u v= , { }: ( , )C u v= , { }: ,S u v=  
4.     while Q ≠ ∅ do 
5.       dequeue pair (w, z) from Q 
6.       from the neighborhood of (w, z), build a list of node 

pairs P with equivalent labels 
7.         for each ( , )x y P∈ do 
8.           if ( , )x y D∈  then continue with loop at line 2 
9.           if { },x y x y S≠ ∧ ∩ = ∅ then 
10.             { }: ( , )C C x y= ∪ , { }: ,S S x y= ∪  
11.             enqueue (x, y) in Q 
12.             report node pairs in C as clone pair {p1,p2} 
13.             { }

1 2
: ,CIS CIS p p= ∪  

14.     :D D C= ∪  
15. _ : ( )C CIS Filter CIS=  
16. ( _ )CG Group C CIS=  
17. Return CG 

 
18. Function Filter(CIS) 
19.   for each c CIS∈  do 
20.     if ( ) ( )c c sup c sup c′ ′⊆ ∧ =  the c CIS′ ∈  then 
21.       : ( )CIS CIS clones c= −  
22.   _ :C CIS CIS=  

Figure 5.  The pseudo code of CL_MCD 

The phase of detection is the main innovation of 
CL_MCD. Instead of only finding maximal clone 
instances as CloneDetective, CL_MCD aims to find all of 
the closed clone instances, on account of closed clone 
instances are better than maximal clone instances at the 
side of completeness of detection results. The definition 
of closed clone instance is presented in section3.2. 
According to the previous analysis, some hidden clone 
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instances that can’t be detected by CloneDetective are 
also closed clone instances and all the information of 
model clones are contained in closed clone instances, so 
the closed clone instances can ensure the completeness of 
detection results essentially. 

As shown in Figure 4, the detection phase of CL_MCD 
mainly contains three steps: Firstly, generating the set 
CIS that contains all candidate clone instances. Secondly, 
filtering CIS to obtain C_CIS that contains all the closed 
clone instances. Thirdly, grouping the C_CIS into clone 
groups. Through these three steps, CL_MCD can find all 
of the closed clone instances, each step of detection phase 
in CL_MCD is analyzed as follows.  

In the first step of detection, the CL_MCD generates 
the set CIS that contains all candidate clone instances. 
CL_MCD iterates over all possible node pairs and uses 
the pairs with the same label as the starting point of a 
breadth-first search to find other node pairs that can be 
combined with the current node pairs to form a candidate 
clone pair(lines 2-14). In this step, in order to generate 
the set CIS that contains all of the candidate clone 
instances, every time after putting a new node pair into 
the queue of Q, CL_MCD transforms all the current node 
pairs in set C into a clone pair, and put this clone pair into 
the set CIS if its size is greater than or equal to the size of 
minimum clone(lines 13-14).Through this way, all of the 
candidate clone instances can be detected by CL_MCD, 
and of course the hidden clone instances of s1, s2, s3 in 
Figure3 (a),and the clone instance s1 in Figure3 (b) can 
also be found. Therefore, CL_MCD can ensure the 
completeness of detection results essentially. However, 
CloneDetective does that until the queue of Q is empty, 
so it can only find maximal clone instance and all of the 
hidden clone instances which usually have smaller size 
and are covered by larger clone instances are lost. Such as 
the hidden clone instances s1, s2, s3 shown in Figure 3(a), 
and the clone instance s1 in Figure3 (b) are lost.  

Analysis showed that in the first step of detection some 
clone instances incompletely covered groups are also put 
into CIS. These completely covered clone instances are 
redundant because all the information of them are also 
contained in the bigger clone instances covering them. By 
this means, we should remove them in the filtering step 
(line 16). In the filtering step, we remove the redundant 
clone instances in CIS and only keep all the closed clone 
instances to form C_CIS. It is carried out as follows. 
Firstly it sorts all the clone instances of CIS in the order 
of increasing clone sizes, and then for every two different 
size clone instances of c and in CIS, if, the clone instance 
isn’t closed clone instance but a redundant clone instance. 
Therefore, C and all the clone instances which have clone 
relationship with clone instance c should be removed 
from CIS. The result of filtering step is that the set of 
C_CIS only contain all of the closed clone instances. In 
the third step of detection phase, we obtain the set of 
clone groups CG by grouping C_CIS (line 17).In this step, 
all closed clone instances in C_CIS are inserted into a 
hash table with their label as a key. The hash table 
consists of several lists, where each list contains the 
closed clone instances that have the same key. Because 

the closed clone instances that have the same key are 
isomorphic, each list represents a clone group. 

The postprocessing phase maps the results of clone 
detection with the original simulink models. Generally, 
this phase can also be used to order clones or discard 
some of them. In the simplest case, all the results of clone 
are just reported to the user in the order of increasing 
clone sizes. Postprocessing phase should show the clones 
in an intuitive, easy to accept and understandable way, so 
that users can analyze and manage the results of clone 
detection easily. 

V.  EMPIRICAL EVALUATION 

To evaluate performance of CL_MCD, we do several 
experiments with both CL_MCD and CloneDetective and 
compare their performance each other.  

A.  Experiment Settings 
All experiments were performed on a desktop 

computer running Windows XP with an Intel Pentium 4 
CPU 2.1 GHz and 3GB RAM. We evaluate the 
performance of CL_MCD in term of completeness and 
running time. 

For comparison, We choose four public simulink 
model-based systems in table 1 as experimental case that 
were also used by Deissenboeck et al. [4] and by Pham et 
al. [5]. The systems are publicly available from Matlab 
Central.Table1 shows the sizes of these systems where 
#Bl denotes the total number of blocks, #Li denotes the 
total number of connection lines, #Ty denotes the total 
number of used block types. The minimum clone size for 
both CloneDetective and CL_MCD is 5. 

B.  Completeness 
We conduct experiments to compare the clone 

detection results between the CL_MCD and 
CloneDetective. In our experiment, the level of clone 
detection results is evaluated from completeness and 
running time. 

TABLE I.   

THE SIMULINK MODEL-BASED SYSTEMS AS CASE STUDY 

System #Bl #Li #Ty 

SIM 428 415 47 

MUL 475 576 44 

SEM 1741 2029 86 

ECW 2312 2274 68 

Table 2 shows the clone detection results of both 
CL_MCD and CloneDetective. #Cl is the numbers of 
correctly detected clone instances after reviewing by the 
definition of clone instance. #CG is the numbers of 
correctly detected clone groups after reviewing by the 
definition of clone group. #T is running time. The running 
time in the table is the only the times taken by the clone 
detection algorithms. The time for preprocessing and 
postprocessing is not included in the displayed numbers. 
#hid-Cl is the numbers of hidden clones that CL_MCD 
can find but CloneDetective has failed to detect. 
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TABLE II.    

CLONE DETECTION RESULTS OF CL_MCD AND CLONEDETECTIVE 

 CloneDetective CL_MCD 

System #Cl #CG #T(ms) #Cl #hid-Cl #CG #hid-CG #T(ms) 

SIM 30 10 391 30 3 10 0 421 

MUL 21 7 250 21 6 9 2 281 

SEM 151 38 1890 206 55 47 9 2187 

ECW 405 82 3453 545 140 82 0 3850 

 

#hid-CG is the numbers of hidden clone groups that 
CL_MCD can find but CloneDetective has failed to 
detect. 

Generally, the completeness of clone detection results 
is determined by the numbers of correctly detected clone 
instances (#Cl) and clone groups (#CG). As shown in 
table 2, CL_MCD can find all the clones that 
CloneDetective finds. Moreover, it also can find some 
hidden clones（#hid-Cl） that CloneDetective has failed 
to find. So in all subject systems, the number of clone 
instances correctly detected by CL_MCD is larger than 
that found by CloneDetective in reasonable running time. 
The rate of increased clones found by CL_MCD is 
measured. That in SEM is 36.4% and that in ECW is 
34.6%. Thus the new algorithm CL_MCD yields a higher 
completeness than CloneDetective. 

C.  Running Time 
The running time in the table is the only time taken by 

the clone detection algorithms. The time for 
preprocessing and postprocessing is not included. The 
running time is the average value of multiple running 
results (twenty times).Because the randomness of initial 
expansion in algorithm and the influence of computer 
cache, the running time has a certain variation amplitude 

From the table 2, we can see that the running time of 
CL_MCD is longer than CloneDetective. This is not 
surprising because CL_MCD needs to filter the CIS. The 
more clones found the more time need. Although the 
running time of CL_MCD is longer, it’s in the range of a 
few hundred milliseconds for large simulink systems. 
Therefore, it is acceptable. Furthermore, from the table 2 
we can know that from SIM to ECW the rate of increased 
clones is greater than the rate of increased running time. 
For example, in SEM the rate of increased clones is 
36.4%. However, the rate of increased running time is 
only 11.5%. In a word, the running time of CL_MCD is 
reasonable and acceptable. 

In summary, CL_MCD is better than CloneDetective 
in the side of completeness, and the running time of it is 
reasonable and acceptable. Furthermore, CL_MCD has a 
certain of scalable as it can process large-scale case like 
ECW in reasonable time. 

VI.  RELATED WORKS  

In this section, we summarize existing related works in 
the area of clone detection on models and in source code. 

We also give a short overview on frequent sub-graph 
mining. 

A.  Clone Detection in Models  
The detection of model clone has been an active area 

of research within the last years. There exist several 
approaches to detect clones in Simulink models. 

In 2008 Deissenboeck et al. published the first exact 
model clone detection algorithm CloneDetective that 
enumerates all maximal exact clones in 
MATLAB/Simulink models [4]. CloneDetective first 
detects all clone pairs and then performs the grouping 
process. In 2009 Pham et al. proposed a clone detection 
framework for Simulink models called ModelCD [5]. The 
framework consists of two algorithms, eScan and aScan. 
The eScan algorithm is designed to find exact clone, 
while the aScan algorithm can find approximate clone. 
Pham et al. attempts to improve CloneDetective by 
providing eScan and aScan together in order to detect 
both exact and near-miss clones.  

Their improvements utilize graph mining work and 
Simulink specific properties. 

In 2011 Hummel et al. presented an approach to clone 
detection by storing indices of fragments of a model in a 
database [8]. The approached is based on the idea that 
most of the times only small parts of a model are altered 
between clone detection runs. In their approach only 
newly changed parts of the model are taken into 
consideration in consecutive algorithm runs. 

In 2012 Alalfi et al. made an improvement based on 
the code clone detection tool NiCad and applied it to 
clone detection for Matlab/Simulink models [6]. After 
improvement, NiCad can find exact clone and 
approximate model clone as well. In addition, in 2012 
Stephan et al. choose some public simulink model-based 
systems as experiment case, and made a comparison of 
the existing simulink model clone detection approaches 
[7]. Furthermore, Stephan et al. presented a new approach 
for evaluating and comparing model clone detectors that 
is based on mutation analysis and also clone 
representation transformation in 2013, which helps to 
address the challenges of manual comparison and to 
provide a standard and extendable way of evaluating and 
comparing model-clone detectors [14]. 

B.  Code-based Clone Detection 
Code-Based clone detection research starts much 

earlier than model clone detection. There are a large 

2130 JOURNAL OF SOFTWARE, VOL. 9, NO. 8, AUGUST 2014

© 2014 ACADEMY PUBLISHER



number of code clone detection approaches and a survey 
can be found in [15]. 

Generally, based on the representation of features 
extracted from source code, these approaches can be 
classified as text-based [16,17], token-based [18,19], tree-
based [20,21], graph-based [22,23] and metric-based [24] 
approaches. Among these approaches, graph-based 
approach is most similarly with the approaches used in 
model clone detection. In the approach of program 
dependence graphs (PDGs) which is used by Komondoor 
and Horwitz firstly [25], the isomorphic subgraphs 
represent code clones. However, existing code clone 
detection algorithms can't be applied to model clone 
detection directly because the fundamentally different 
between code and model. 

6.3 Frequent sub-graph mining 
Graph-based clone detection can be regarded as a 

specialization of frequent sub-graph mining problem 
within a single graph and a minimum required pattern 
frequency of two after the model has been normalized to 
a labeled graph. 

Frequent sub-graph mining deals with the extraction of 
interesting structures from graphs [26,27]. An overview 
and comparison of algorithms for sub-graph mining is 
given by [28]. These algorithms strive for an exact 
solution and usually work with a much higher required 
minimum pattern frequency than 2. Thus, they may not 
be appropriate for our purpose. However, in order to 
develop novel algorithms for model clone detection, 
those sub-graph mining algorithms offer a certain 
reference value. 

VII.  CONCLUSION AND FUTURE WORKS 

In this section we summarize our findings and give an 
overview of potential future works to improve clone 
detection for models. 

A.  Conclusion 
MDSD has become a popular approach for creating 

software systems. Most of the reasons leading to clones 
in code-based development are also valid for MDSD. In 
simulink models clones are the exactly or similar 
matched fragments, and clones in simulink models 
require additional efforts for maintenance and 
management. 

This paper presents CL_MCD (Closed Model Clone 
Detection), a clone detection algorithm for Matlab/ 
Simulink models, which aims to find closed clone 
instance. Experimental results show that CL_MCD has 
better performance than CloneDetective. It detects all of 
the closed clone instances in the detection phase through 
three steps: generating all the candidate clone instances at 
first, then filtering redundant clone instances to obtain all 
the closed clone instances, and grouping all the closed 
clone instances into clone groups at last. The process of 
generating all the candidate clone instances is the main 
innovation of CL_MCD. CL_MCD iterates over all 
possible node pairs and uses the pairs with the same label 
as the starting point of a breadth-first search to find other 
node pairs that can be combined with the current node 

pairs to form a candidate clone pair. In order to find all 
the closed clone instances, every time after finding a new 
node pair with the same label, CL_MCD transforms all 
the node pairs into a clone pair, and puts this clone pair 
into the set CIS that contains all the candidate clone 
instances if its size is greater than or equal to the size of 
minimum clone. If a candidate clone instance is one part 
of any other instance, it is deleted. Therefore, redundant 
clone instances in CIS are removed and can obtain the set 
C_CIS that contains all the closed clone instances. 
CL_MCD can find all the clones that CloneDetective 
found. Moreover, it also can find some hidden clones that 
CloneDetective has failed to detect. These hidden clones 
are included in closed model clone instances and they are 
also useful for constructing reusable models library in the 
way of model-driven software development. 

B.  Future Works 
Model clone detection has been studied only in recent 

years. There are still many problems remain to solve. The 
most obvious direction for improvement is the clone 
detection algorithm which should has higher degree of 
completeness in reasonable and acceptable running time. 
Moreover, model clone detection algorithms must be 
capable of processing larger-scale models within 
reasonable time and memory limits because Simulink 
models usually have significant size in real-world. We 
can learn some techniques and ideas from frequent sub-
graph mining and code clone detection. 

Another interesting research problem is to find 
approximate model clone in which two parts of a model 
have slight differences. CL_MCD can only find exact 
model clone at present, we will improve CL_MCD and 
make it can detect approximate model clone as well in the 
future. Furthermore, improving the relevance of clone 
detection is also an important research direction. 
Deissenboeck etc. have shown that currently many of the 
clones found are not interesting for the developer, 
although they are of course clones according to clone 
definition [29]. In order to make the clone detection more 
targeted and personalized, in the phase of preprocessing 
and normalization, it is interesting to study how to 
remove the blocks and its adjacent lines whose types are 
not cared by users, and only keep the blocks and its 
adjacent lines whose types are more valuable to construct 
reusable models library. It is also interesting to analyze 
the factors that affect clone relevance and study the 
scheme of clone ranking. 
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