

Viewpoint Based Problem Modeling Technique
and Its Application

Zhishang Yang

Department of Computer and Information Engineering
Guangxi Normal University, Guilin, China

Email: zhishang_yang@163.com

Zerui Sun and Shenluo Li
Department of Computer and Information Engineering

Guangxi Normal University, Guilin, China
Email: {gxnuszr, lishenluo}@163.com

Abstract—Jackson’s Problem Frame (PF) approach
emphasizes the importance of modeling and analyzing the
world outside of computer before drifting into designing
solutions. Furthermore, it uses problem diagram to vividly
capture requirements, problem domains, and their relation
in an intuitive and structural way. After visualizing the
problem, it provides a solid foundation for communication
between software stakeholders, decreasing the possibility of
mismatch between customer’s real needs and software
system developers’ understanding of customer needs. Thus
PF approach is a useful tool in Requirement Engineering
(RE).
 While today’s development activities of complex system
invariably deeply roots in large scare problem context and
involves various kinds of stakeholder who have different
perspectives or viewpoints on the problem they are
addressing. It is vital to explicitly represent and analyze
these viewpoints, their relationships, then integrate them
into a complete and consistent form to ease further overall
architecture design and development.
 This paper explores the integration of viewpoint concepts
with problem frames methodology which aim at providing a
more flexible and practical way to express requirements
from different classes of stakeholders and the problem
context they concerned, then, we integrate these viewpoint
based sub-problem together to provide basis for subsequent
phrases in software life cycle.

Index Terms—problem frame, viewpoint, architecture
design, requirement engineering

I. INTRODUCTION

Since the rumored “requirements problems” has been
confirmed [1] and more and more people recognize the
critical nature of requirements in Software Engineering
(SE), RE has gradually been established as an important
sub-field of SE [2]. However, although almost 20 years
have been past, the problem of mismatch between what
the customer’s needs and what the software developer
understands the customer’s needs [3] still exist, this
problem often leads to project failures, cost overruns and
late deliveries. As Bashar et al [4] pointed out, better
modeling and analysis of problem domains, as opposed to
the behavior of software, are still the key research areas.

PF approach [5, 6] captured the model of problem that
the software stakeholders confronted by providing a
framework for representing domains, requirements
relevant to the problem, their relationship, thus helps a lot
in customer requirement elicitation and the elimination of
misunderstanding between developers and customers
about the problem at hand. However, at present, how to
locate and bound the complex real world problem still
heavily depends on the experience and technique of
requirement engineers, and systematical guide in a
natural and understandable way of the problem
discovering process is still absent in the literature, these
seriously hinder the application of PF approach in
industry.

In this paper, we propose to combine the concepts of
viewpoint [16] with PF approach to improve the
requirement elicitation and problem locating and
bounding process, and at the same time, provide solid
foundation for further architecture design. The rest of the
paper is organized as follows: Section II introduces the
conceptual basis of our technique. Section III proposes a
process model that guild the practitioner to use our
technique. Section IV validates the usability of our
technique by a real problem. Section V presents related
works and makes some discussion. Section VI proposes a
meta-model for future work.

II. CONCEPTUAL BASIS

In this section, we will describe the concepts that are
relevant and illustrate the reasons for integrating them in
our technique. Some discussions are also provided.

A. Problem Frame Approach

In PF approach, software problem is defined as a task
to be accomplished by software development and
modeled by problem diagrams. Problem diagrams
describe a particular problem and show the problem parts:
the requirement, the domains, and the interfaces and
references among them. The domains are the parts of the
world that are relevant. The parts of the world in which
the problem locate is called problem context and are

JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014 1245

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.5.1245-1254

Figure1. Patient monitoring problem diagram form [6], modified.

shown in a context diagram. Context diagram structures
the world into machine domain and problem domains,
and shows how they are connected. The machine domain
is domain about which machine to be built in a software
development problem, how it is built in the form of
software and deployed by running the software on a
general-purpose computer. Interface is the connection
among two or more domains consisting of phenomena
that they share. Phenomenon is the element of what we
can observe in the world such as event, state.
Requirement phenomenon is the phenomenon of a
problem or a domain that are the subject of requirement
references. Specification phenomenon is the phenomenon
of a problem or a domain that are shared with the
problem machine. These concepts and their relation are
briefly scratch in figure1.The rectangles with a double
vertical stripe, a vertical stripe and without vertical stripe
is the machine, the design domain and physical domain
respectively, the solid line and dotted line represent the
interface and requirement reference or constrain
respectively, and the dashed oval represents the
requirement. A systematic account of PF approach is
beyond the scope of this paper and can be found in [6].

B. Problem Decomposition and Composition

In RE, the sub-field of SE, which aims to cope with the
problem in the early phase of software life-cycle, the
application of the ‘divide and conquer’ principle can be
found in various methodology, such as use case[7],
scenario[8], goal[9], PF approach[5,6].

In [6], Jackson point out that the key to mastering
problem size and complexity is decomposition, which
means to break down a given large and complex problem
into a number of smaller and simpler sub-problem. There
are plenty work about problem projection or
decomposition in the literature, such as
[10,11,12,13,14,15], but not many to deal with the
problem of how to completely capture and model the
complex reality problem, which is the input of the
projection and decomposition process and also the basic
for architecture and solution design.

C. Extending PF Approach with Viewpoint

As you see in Figure 1, the dashed oval named
Requirement which is a kind of composite requirement
represents the requirement in traditional problem diagram.

The requirement description of this node is some kind of
integrate description that generated through synthesizing
various classes of stakeholder requirements by the
requirement engineer. In another word, it represents a
synthesized view of all kind of stakeholders. We argue
that the more natural or close to reality of the method we
use in requirement elicitation and modeling process, the
more complete and comprehensive information we will
get, and that information is good for further analysis and
design activities. So in our points of view, primarily,
there are three kinds of drawback while using a
composite requirement node or description in a problem
diagram to represent all kind of stakeholder’s
requirements:

1) It violate the basic nature of software problem that
multiple classes stakeholders involve in large-scale
software development often hold multiple view on the
system being developed, and each single class of view
concerns about different subset of domains and their
relations in the problem context.

2) It is hard for requirement engineers to composite
various kinds of requirement description from different
classes of stakeholder into a single, complete, consistent
requirement.

3) In complex realistic problem, this kind of
representation will become the obstacle of further
analysis and design such as architecture design, problem
decomposition, etc.

Due to the problem discuss above, we propose to
extend PF approach with the idea of viewpoint in RE. In
history, there is plenty of work about viewpoint in SE or
more specifically in RE, while normally different
methods have different purposes, the definition of
viewpoint also vary largely. For example, in CORE [16],
viewpoint is defined in two levels. The first level consists
of all entities that interacting or affecting the system in
some way. The second level concerned with defining
viewpoints that are sub-processes of the system and
bounding viewpoints of entities that interacted indirectly
with the system; in [17], viewpoint is seen as an external
entity interacting with the system which being analyzed,
but one can exist without the presence of the system; in
[18], while being treated as vehicle for separation of
concerns, viewpoints was define as loosely coupled,
locally managed, distributable objects encapsulating
partial representation knowledge, development process
knowledge, and specification knowledge, about a system
and its domain; in[19], viewpoint represents a particular
perspective or a set of perceptions of the problem domain,
often associated with a 'viewer' or agent that maintains
and accepts responsibility for that viewpoint, therefore
captures the domain knowledge and understanding
related to a particular role or view of the problem domain
adopted by the viewpoint agent. To ensure as far as
possible that the system can meets the needs and
expectations of different classes of stakeholders, it is
necessary to capture, model, analysis, and understand
their various viewpoints and to detect and eliminate any
inconsistencies and conflicts between these viewpoints.

1246 JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014

© 2014 ACADEMY PUBLISHER

Figure2. A process model for viewpoint based problem modeling technique.

TABLE I.

ABBREVIATION EXPLANATION OF PROCESS MODEL.

Abbreviation Original Spelling Description
VS
identification

Viewpoint Source
Identification

Represent specific
classes of stakeholder
which contain the
similar or same
view/requirement about
the system to be build.

VOR
elicitation

Viewpoint Oriented
Requirement
elicitation

Represent requirements
from specific VS.

CDI Concerned Domains
Identification

Identify domains
concern by specific
VOR.

VSC Viewpoint Structure
Confirmation

Confirms the structure
intern to each
viewpoint.

VI Viewpoint
Integration

None.

H&N AD Hardware and
Network
Architecture Design

None.

SAD Software
Architecture Design

None.

We inherit the work in [20, 21, 22, 23] to give the
formal definition of concepts that related to our work. We
define viewpoint as:

 V= {M, D, L, VOR} (1)
V is short for viewpoint, which encapsulates elements

that concerned or catches interest of stakeholders from
specific classes, ignoring those that are unrelated.
Formula (1) demonstrates that a viewpoint contains four
aspects:

a) VOR, short for viewpoint oriented requirement,
which represent requirement of stakeholders from
specific classes, of whom have the same or similar
perspective or desire to develop the system.

b) D denotes domains in the problem context which
related to VOR. Also, D is defined as:

D={x|x B x P x X x C x D}∈ ∨ ∈ ∨ ∈ ∨ ∈ ∨ ∈ (2)
Formula (2) means that the type of D is constrained by

the following elements: B(biddable domain), P(physical
domain), X(lexical domain), C(causal domain), D(design
Domain), for more details about domain type, please refer
to [6].

c) M denotes sub-machine (software component)
which interact with related domains to satisfy
corresponding VOR.

d) L denotes interface between different domains,
domain and VOR or domain and machine, for which
information is transmitted and internal viewpoint
structure is constructed. Also, L is defined as:

 L={(x,y)|x,y (M D VOR) x≠y}∈ ∨ ∨ ∧ (3)
Formula (3) means that L is a set of which each

element is a tuple, the elements in each tuple belong to
set (M∨D∨R) and they can’t equal to each other, this
means that we view every domains in a problem diagram
as ‘meta-domain’ and thus they can’t be disassembled.
Actually, set L defines the syntagmatic relation inside
each viewpoint.

Zave et al [20] and Hall et al [21] view a software
problem as:

 K, S|-R (4)
And
 W, S|-R (5)
Respectively, formula (4) and (5) mean that the way to

solve the problem is to find S which combines with K or
W can satisfy R, where K is a description of the problem
domain and W is the real-world context, S is the
specification of the solution, and R is the problem
requirement. Obviously, M and VOR in (1) fall into the
concept of S and R in (4) and (5) respectively, D and L in
(1) fall into the concept of K in (5) or W in (6).

Correspondingly, the diagrammatic representation of
viewpoint is a viewpoint diagram (VD), we formally
define VD as follow:

 VD= {M, D, L, VOR} (6)
M,D,L,VOR represent the graphical notation of

M,D,L,VOR in formula (1) respectively and their
diagrammatic representation is the same as in [6].

Confront to the fact that the development of complex
system unavoidably involves various classes of
stakeholders who have different perspectives (viewpoints)
on the problem they are addressing, the system

developing and they concern about only part of the whole
problem, then we define the software problem as:

 P= 1,...,i n=
∨

Vi (7)
P is short for problem. Formula (7) means that a

problem is the union of a series of viewpoints. We use
VOPD (Viewpoint-oriented problem diagram) to
graphically represent P, so we have:

 VOPD= 1,...,i n=
∨

 VD i (8)
Formula (8) means that a VOPD is the union of VDs.

III. PROCESS MODEL FOR VIEWPOINT BASED PROBLEM
MODELING TECHNIQUE

We propose a process model, as Figure 2 depicts, to
guide the practitioner to use our technique in reality
software development activity. The process model only
concern about the activities of problem bounding and
locating and system architecture design for the purpose of
emphasizing the advantage of our technique for further
system architecture design. Other activities behind this
model will be the same as activities in traditional
software lifecycle.

Detail explorations about the process model can be found
in table I.

JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014 1247

© 2014 ACADEMY PUBLISHER

TABLE II

SYSTEM VS TABLE.

Domain/
VS Id

Domain/
VS Name

Domain
Type

Description

1 Customer B Those who buy goods
and pay by cash or credit
card.

2 Cashier B Those who receive good,
cash or credit card from
customer and operate the
POS system and finish
the due properly.

3 Weigh
Good Seller

B Those who sell special
goods that should be paid
according to its weigh.

4 Manager B Those who are
responsible for
system database and
stock maintenance,
promote sale, purchase of
merchandise, financial
settlement, etc.

5 General Manager B Has the highest priority
and can access all
information of the system
and provide management
decision.

TABLE III

VS AND REQUIREMENTS RELATION TABLE.
Domain/
VS Id

Requirement

1 1) Present goods/ sticky notes, cash and receive bill
and payment;

2) Present goods/ sticky notes, credit card , input the
password and receive bill, credit card with proper
amount of money deducted;

3) Present goods and receive the partial bill.
2 4) Receive goods/ sticky notes, cash, use the barcode

reader to gather goods information and input the
amount of money received and the amount of
money should return will be display, the bill will
be print automatically.

5) Receive goods/ sticky notes, credit card, use the
barcode reader to gather goods information and
proper amount of money was deducted from the
credit card, the bill will be print automatically.

3 6) Receive goods, use the barcode reader to gather
goods information and use the Electronic Scale to
weigh the goods received then the sticky notes
print automatically.

4 7) Check and maintain system database and stock,
promote sale plan generation, purchase order
generation, financial statistics generation.

5 8) Access all kind of information of the system,
management suggestion generation.

As you can, one of the core activities in the ‘problem
bounding and locating’ phase is ‘viewpoint identification’.
Given the fact that different works about viewpoint
existing in the literature have different purpose, thus the
guidance for viewpoint identification varies from method
to method. For example, CORE [16] suggests a session of
‘brainstorming’, to identify possible sets of viewpoint,
such as users, buyers and specific of the system, then
distilled them into a set of functional and non-functional
viewpoints, furthermore, functional viewpoints is divided
into a set of bounding and defining viewpoints; Kotonya
and Sommerville [17] consider viewpoint identification
as the identification of ‘system authorities’, people or
documents that have an interest in or specialist
knowledge of the application domain, including system
end-users, system procurers, system specialists,
documentation on existing systems, etc. Nuseibeh and
Kramer[18] propose to identify viewpoint by instantiating
the so call viewpoint template which contains five
viewpoint slots: the style slot, the work plan slot, the
domain slot, the specification slot, the work record slot;
Darke and Graeme[19] identify viewpoint primarily
through recognizing different ‘viewers’ or agents, and the
domain knowledge or understanding they capture.

For the purpose of ‘sensitive to how people perceive
and understand the world around them, how they
interact…’, as Bashar et al point out in [4], we first
identify the system stakeholders and their requirements.
According to the similarity of the requirements (the
domains that concerned, the desire effects of the domains
upon the system being developed), we then classify the
stakeholders into different classes and regard them as
different VS. After that, we explicitly record these VOR
and CDI, explore the structure internal to each viewpoint.
Finally, we integrate these viewpoints into a complete
and consistency problem diagram. In the system
architecture design phase, we carry out the activity of
‘Hardware and Network Architecture Design’, ‘Software
Architecture Design’ based on the output of the early
phase.

In the next section, we will demonstrate the availability
of our technique by modeling and designing the
architecture of a real problem.

IV EXEMPLE

We follow the activities introduced in the process
model which proposed in Figure 3 to model and solve a
hypermarket management problem, to demonstrate the
usability of our technique.

A. Problem Bounding and Locating

While subsequently carry out the activities introduce in
our process model and with the help of various kind of
traditional elicitation techniques such as questionnaires,
surveys, interviews, and analysis of existing
documentation (organizational charts, process models or
standards, and user or other manuals of existing systems),
we get the following result.

Activity 1, VS identification. We identify the following
VS as table II depicts.

Activity 2, VOR elicitation. The relation between
requirements and corresponding VS are details in table III.

Considering the scenario interaction between different
VSs, we then define the VORs, its VS and requirement as
table IV demonstrate.

For the convenience of description, we list domains
and their ID other than those details in above table in
table V.

1248 JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014

© 2014 ACADEMY PUBLISHER

Domain
Id

Domain
Name

Domain
Type

Description

15 E-Bank
Server

C Machine composited of
special-purpose hardware and
software. It is well designed to
provide services for electronic
transaction (ET).

16 Central
Management
Server

M Machine composited of
special-purpose hardware and
software. It monitors the
operation of Database Server,
Management Workstation and
POS Server and so the whole
system. Accessed by general
manager only.

17 Database
Server

M Machine composited of
special-purpose hardware and
software. It provides access to
Optical Storage Device.

18 Optical Storage
Device

P Machine composited of
special-purpose hardware. It
stores all information of the
whole system and provides
fast access for later usage.

19 Management
Workstation

M Machine composited of
special-purpose hardware and
software. It is used by
manager to maintain basic
information, promote sales,
produce order form, and
all kinds of final statement.

TABLE IV
VOR TABLE.

VOR
Id

Related
VSs

VOR Description

1 1,3 Customers present goods and sellers
present sticky notes with information
about this due.

2 1,2 Customers present goods/ sticky notes
and payment, cashiers present balance
and bill.

3 1,2 Customers present goods/ sticky notes,
credit card then input password;
cashiers present bill.

4 4 Check and maintain system database
and stock, promote sale plan
generation, purchase order generation,
financial statistics generation.

5 5 Access all kind of information of the
system, management suggestion
generation.

TABLE V

 SYSTEM DOMAIN TABLE.
Domain

Id
Domain
Name

Domain
Type

Description

6 Barcode
Reader

C Identify barcodes that
pasted on all kinds of
goods, and then transmit
the information to the
POS Host.

7 Bill Printer C Receive bill information
from the POS Host and
print it accordingly.

8 Customer Display C Display due information
for the customers.

9 Smartcard
Reader

C Identify Id of credit card
and transmit it to POS
Host.

10 CCPK C Short for credit card
password keyboard.

11 Cash Drawer C Pushed open according
to the command of POS
Host, and then closed
by the cashier.

12 Electronic
Scale

C Display the catalogue
and unit price of the
goods, calculate the
total price according to
goods’ weight, and then
print the sticky notes
which contain due
information, such as
barcode, unit price and
weight of the goods,
total price, etc..

13 POS Server M Machine composited of
special-purpose
hardware and software.
It runs POS server
application to manage
large amount of POS
Hosts and communicate
with E-Bank Server and
Database Server.

14 POS Host M Machine composited of
special-purpose
hardware and software.
It runs POS client
application to manage
other special domains
from 6-11 to finish the
due.

TABLE VI
VOR AND DOMAINS RELATION TABLE.

VOR Id VS Id Concerned Domain id
1 1,3 12,14
2 1,2 6,7,8,11,14
3 1,2 6,7,8,9,10,14
4 4 13,14,17,18,19
5 5 13,15,16,17,18,19

Figure 3a. Viewpoint1

Figure 3b. Viewpoint 2.

Activity 3, CDI. Domains related to each VOR are
details in table VI.

Activity 4, VSC. While using requirement node and
biddable domain node to denote for VOR node and VS
node respectively, we can use the graphical notation of
PF methodology to model the identified viewpoints as
bellows.

JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014 1249

© 2014 ACADEMY PUBLISHER

Figure 3c. Viewpoint 3.

Figure 3d. Viewpoint 4.

Figure 3e. Viewpoint 5.

TABLE VII

SYSTEM HARDWARE LIST.
Device Number

POS terminal N
Electronic scale N

Management workstation N
Management server N

DB server N
POS server N

Optical switch N
Optical storage device N

Referral server N
Proxy server N

Firewall N

TABLE VIII.
TECHNOLOGIES LIST OF SOFTWARE ARCHITECTURE.

Item Description
Software system architecture MVC
Programming language J2EE
OS Windows/Linux/Unix
DB MySql/SqlServer/Oracle
Web Server Tomcat/Websphere
Secondary developing method Modularization-based approach

(Inheritance, override),
Interface-based approach

Development tool myEclipse
Front-end technology Spring+Extjs
Back-end technology Mybatis/Hibernate
ReportViewer jfreeChar

Figure 6. Software Architecture.

Activity 5, VI. After the integration of above
viewpoints, we then get the VOPD as figure 3f in page
7 depicts.

Note that we haven’t directly connect biddable
domains with the machines, because actually they interact
with the system through human-machine interfaces such
as keyboard, mouse, display, and this kind of component

is implicitly embedded into domain of type ‘M’. All these
graphical notations are the same as [6].

B. System Architecture Design

Given above VOPD, we then extract the problem
context as figure 4 in page 7 depicts.

 Note that string ‘1-*’ and ‘*-1’ mean that one POS
Server and one Management Workstation manage a large
amount of POS Hosts.

Activity 1, Hardware and Network Architecture
Design. According to above information gather, we then
list the system hardware in table VII.

Note that what we design is a common solution, the
exact number of device will be depending on the scale of
application. So ‘N’ in the ‘Number’ column is denoting
for any positive integer. We then design the system
hardware and network architecture as figure 5 in page 7
depicts.

Our design has the following advantages:
High efficiency. While implementing the strategy of

separate between data and applications, different
applications, we can guarantee that every module of the
system can run independently and efficiently.

Security. By adopting network security techniques
such as isolate between intranet and extranet, intrusion
detection, VPN, access control, we can guarantee the
system run safety.

Activity 2, Software Architecture Design. The
technologies we use are described in table VIII.

The hierarchical relation about these techniques are
vividly depict in figure 6.

1250 JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014

© 2014 ACADEMY PUBLISHER

Figure 3f. Hypermarket management VOPD.

Figure 4. Hypermarket management problem context diagram.

Figure 5. Hardware and Network Architecture.

JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014 1251

© 2014 ACADEMY PUBLISHER

Figure 7. A viewpoint based on problem meta-model.

In figure 6, system hardware is demonstrated in figure

5. While using the standard communication protocol such
as TCP/IP or R485, our software system can run on
multi-platform, include Windows, Linux and UNIX.
According to the scale of the application, we can use
mysql, sqlserver or oracle as database, and choose tomcat
or websphere as web server according to the OS we use.
Within J2EE framework, we use ‘Spring+Extjs’ and
‘mybatis/hibernate’ as front-end demonstration technique
and back-end manipulation technique respectively. In the
end, we use jfreeChar middleware to generate statistical
analysis report.

Our design has the following advantages:
High efficiency. While using the hierarchical structure

to separate the application from the server, the overall
performance of system was increase greatly.

Strong extension capabilities. Hierarchical structure
makes it very easy to extend presentation layer such as
add IPad client or migrate databases such as change from
SQL Server to Oracle.

Low cost. Use hierarchical structure can lead the
structure of problem more easily to read and understand,
thus greatly improve the development productivity and
lower the development and maintenance cost.

V RELATED WORKS AND CONCLUSION

In spite of several searches, there are not many works
explicitly handling problems frames and viewpoint.
Laney, R., L. Barroca, et al [24] introduce Composition
Frames to handle inconsistent requirements problem.
Lencastre et al [25, 26] integrates aspect concepts in
Aspect-Oriented Software Development (AOSD)[27] into

 Problem Frames to handling crosscutting concerns, in
[28], they go further to composite problem by aspect.
Rapanotti, L., J. G. Hall, et al [29] introduce Architectural
Frames – combinations of architectural styles and
Problem Frames to facilitate problem analysis,
decomposition and subsequent recomposition. Similarly,
Choppy, C. H., et al [30] define architectural pattern for
different problem frames, while a complex problem can
decompose into subproblems that match the basic frame,
the software architecture for the overall problem can be
construct by compositing corresponding architectural
pattern.

Our experience in applying this approach in real case is
meaningful but not very satisfactory, the initial feedback
we received from this empirical study confirms that:

1) This approach respects the fact of practical software
development activity, providing a natural and useful way
to elicit and model different classes of stakeholder’s
requirement;

2) The captured subproblems and the integrated huge
problem provide a basic infrastructure for internal and
external viewpoint analysis;

3) This method provide hint to perform problem
projection thus ease the way of problem decomposition;

4) the integration of these viewpoint based problem
model provide solid foundation for overall system
architecture design, it still useful in the situation that
when the problem at hand can’t fix into any basic frame
or it can’t be decomposes into subproblems that match
basic frame.

However, although with the help of Openpf [31],
perform viewpoint integration manually proved to be a

1252 JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014

© 2014 ACADEMY PUBLISHER

tedious and error-prone task, the success of system
architecture design also heavily depends on the
complexity of the problem and the experience and
professional capability of the analyst or designer. This
greatly restricts the method’s application in real context.
Thus we go further to propose a meta-model, as figure 7
in page 8 depicts, for tool building to ease the application
of our approach.

VI A META-MODEL FOR FUTURE WORK

There are plenty of works in the literature containing
introductions of meta-model, which support PF
approach[25,26,32] or Problem decomposition[33,34],
but none of them explicitly model domain properties and
support viewpoint base problem modeling technique.
Eclass ‘Vstkh’ is short for viewpoint stakeholder; eclass
Property’ uses the relationship between domain
phenomena to explicitly model properties of domains and
machine; enumeration ‘stmlType’ is short for ‘stimulus
type’, ‘effectType’ enumerates possible effects upon
different kinds of stimulus, ‘PSType’ enumerates the
source or target type of a phenomenon, ‘LSTType’
enumerates the source or target type of a link. Here, we
do not provide detailed discussion about the meta-model,
as its design is strictly conform to the definition in section
II.

Summarize experience in building tool which support
transforming requirements into specifications [35], We
plan to exploits the Eclipse Graphical Modeling
Framework (GMF) [36] technology for the definition of
viewpoint based problem model editors based on our
meta-model, furthermore, make full use of model to
model(M2M) transformation technique such as ATL [37]
and model to text(M2T) techniques such as Acceleo [38]
to develop plug-ins on our model editor to make it
support automatic viewpoint integration, viewpoint based
problem projection and system architect generation.
Future work also includes applying our approach to more
empirical studies.

ACKNOWLEDGMENT

We would like to thank Dr.Li, Dr.Yu and TongYi for
the kindly instruction and useful comments on this paper.
This work was supported by Innovation Project of
Postgraduates in Guangxi, China under Grant No.
YCSZ2012059.

REFERENCES

[1] T. E. Bell and T. A. Thayer. “Software requirements: Are
they really a problem?” In Proceedings of the 2nd
international conference on Software engineering, IEEE
Computer Society Press, Los Alamitos, CA, USA, 1976,
pp. 61–68.

[2] S. Greenspan, J. Mylopoulos and A. Borgida, "On formal
requirements modeling languages: RML revisited,” In
ICSE '94: Proceedings of the 16th international conference
on Software engineering, pp.135–147, May 1994

[3] J. Castro, M. Kolp and J. Mylopoulos, “A Requirements-
Driven Development Methodology.” Advanced
Information Systems Engineering. 2001, pp.108–123.

[4] Bashar Nuseibeh and Steve Easterbrook, “Requirements
engineering: a roadmap,” In Proceedings of the Conference
on The Future of Software Engineering (ICSE '00), ACM,
New York, NY, USA, 2000, pp.35–46.

[5] Michael Jackson. Software Requirements and
Specifications: a lexicon of practice, principles and
prejudice. Addison-Wesley, 1995.

[6] Michael Jackson. Problem Frames: analyzing and
structuring software development problems. Addison-
Wesley Longman, Co., Inc., Boston, MA, USA, 2001.

[7] Ivar Jacobson and Pan-Wei Ng, “Aspect-Oriented
Software Development with Use Cases,” Addison-Wesley
Object Technology Series, 2004.

[8] S. Robertson and J. Robertson, Mastering the
Requirements Process, Addison-Wesley, 1999.

[9] E. Yu. “Towards modeling and reasoning support for
early-phase requirements engineering.” In Proceedings of
the 3rd IEEE Int. Symp. On Requirements Engineering,
Washington D.C, USA, pp. 226–235, Jan 6-8, 1997.

[10] D. Jackson, M. Jason, “Problem decomposition for reuse,"
Software Engineering Journal, vol.11, pp.19-30, Jan 1996.

[11] L. Rapanotti, J. G. Hall, et al. “Architecture-driven
problem decomposition.” In Proceedings of the 12th IEEE
International Requirements Engineering Conference, pp.
80-89. 2004.

[12] J. Zhi and L. Lin. “Towards automatic problem
decomposition: an ontology-based approach.” In
Proceedings of the 2006 international workshop on
Advances and applications of problem frame. ACM, New
York, NY, USA, pp. 41-48.

[13] C. Xiaohong, J. Zhi. “A Scenario-Based Problem
Decomposition.” The 9th International Conference for
Young Computer Scientists, ICYCS, pp.1150-1155. 2008.

[14] J. Zhi, C. Xiaohong, et al. “Performing Projection in
Problem Frames Using Scenarios.” Software Engineering
Conference. APSEC '09. Asia-Pacific, pp. 249-256. Dec
2009.

[15] C. B. Haley, R. C. Laney, B. Nuseibeh. “Using Problem
Frames and projections to analyze requirements for
distributed systems.” In: Proceedings of the Tenth
International Workshop on Requirements Engineering:
Foundation for Software Quality, co-located with the 16th
International Conference on Advanced Information
Systems Engineering, Riga, Latvia. pp. 7-8. Jun 2004.

[16] A. Dardenne, S. Fickas, et al. “Goal-directed concept
acquisition in requirements elicitation.” Proceedings of the
Sixth International Workshop on Software Specification
and Design, pp. 14-21. 1991.

[17] G. Kotonya, I. Sommerville, “Viewpoints for requirements
definition.” Software Engineering Journal, vol.7, pp.375-
387, Nov 1992.

[18] B. Nuseibeh, J. Kramer, et al. “A framework for expressing
the relationships between multiple views in requirements
specification.” IEEE Transactions on Software
Engineering, vol. 20, pp. 760-773.1993.

[19] P. Darke, G. Shanks, “Stakeholder viewpoints in
requirements definition: A framework for understanding
viewpoint development approaches.” Requirements
Engineering, vol.1. pp. 88-105.1996.

[20] P. Zave and M. Jackson, “Four dark corners of
requirements engineering.” ACM Transactions on Software
Engineering and Methodology. Vol. 6. pp. 1–30, January,
1997.

[21] J. G. Hall, L. Rapanotti, et al. “Problem Oriented Software
Engineering: Solving the Package Router Control
Problem.” IEEE Transactions on Software Engineering,
Vol. 34, pp. 226-241, March-April, 2008.

JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014 1253

© 2014 ACADEMY PUBLISHER

[22] J. G. Hall, L. Rapanotti, and Michael Jackson, “Problem
frame semantics for software development.” Software &
Systems Modeling, vol. 4, pp. 189-198. 2005.

[23] M. Jackson and P. Zave. “Deriving specifications from
requirements: an example.” Proceedings of the 17th
international conference on Software engineering. Seattle,
Washington, United States, ACM, pp. 15-24. 1995.

[24] R. Laney, L. Barroca, et al. “Composing requirements
using problem frames.” RE '04 Proceedings of the
Requirements Engineering Conference, 12th IEEE
International. pp. 122-131, 2004.

[25] M. Lencastre, J. Araujo, A. Moreira, J. Castro, “Towards
aspectual problem frames: an example” Expert Systems,
vol. 25, pp.74-86. 2008.

[26] M. Lencastre, J. Araujo, A. Moreira, and J. Castro.
“Analyzing crosscutting in the problem frames approach.”
In Proceedings of the 2006 international workshop on
Advances and applications of problem frames. ACM, New
York, NY, USA, pp. 59-64. 2006.

[27] A. Rashid, A. Moreira, J. Araújo, “Modularisation and
Composition of Aspectual Requirements”, AOSD’03,
Boston, USA. pp. 11-20. 2003.

[28] M. Lencastre, A. Moreira, et al. “Aspects Composition in
Problem Frames.” International Requirements Engineering,
2008. RE '08. 16th IEEE, pp. 343-344. 2008.

[29] L. Rapanotti, J. G. Hall, et al. “Architecture-driven
problem decomposition.” Requirements Engineering
Conference, 2004. Proceedings. 12th IEEE International.
pp. 80-89. 2004.

[30] C. H. Choppy, D.; Heisel, M. “Component composition
through architectural patterns for problem frames.”
Software Engineering Conference. APSEC 2006. 13th Asia
Pacific, pp. 27 – 36. 2006.

[31] OpenPf, http://mcs.open.ac.uk/yy66/.
[32] P. Colombo, L. Lavazza, et al. “Towards a Meta-model for

Problem Frames: Conceptual Issues and Tool Building
Support.” ICSEA '09. Fourth International Conference on
Software Engineering Advances, pp. 339-345. 2009.

[33] D. Hatebur, M. Heisel, and H. Schmidt. “A Formal
Metamodel for Problem Frames.” Proceedings of the 11th
international conference on Model Driven Engineering
Languages and Systems, Toulouse, France: Springer-
Verlag, pp. 68-82, 2008.

[34] L. Lavazza, A. Coen-Porisini, et al. “A Meta-model
Supporting the Decomposition of Problem Descriptions.”
Fifth International Conference on Software Engineering
Advances, pp.50-57. 2010.

[35] Zhi Li, Jon G. Hall, Lucia Rapanotti. “On the systematic
transformation of requirements to specifications”,
Requirements Engineering, Springer-Verlag, May, 2013.

[36] Graphical Modeling Framework (GMF),
http://wiki.eclipse.org/GMF.

[37] ATL, http://www.eclipse.org/atl/.
[38] Acceleo, http://www.eclipse.org/acceleo/.

Zhishang Yang, born in 1988, M. S. His research interests
include requirement engineering and software quality
management.

Zerui Sun, born in 1988, M. S. His research interests include
requirement engineering , image processing and data hiding.

Shenluo Li, born in 1987, M. S. His research interests include
requirement engineering, machine learning and data mining.

1254 JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014

© 2014 ACADEMY PUBLISHER

