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Abstract—Abstract algebra is the study of algebraic 
structures. Some branches of algebraic structures, such as 
groups, rings, fields are difficult to learn and less desirable 
due to the abstract characteristic. To help facilitate the 
learning process of algebraic structures so that it becomes 
more attractive, an application of a computer program is 
developed to help the testing of algebraic structures. By this 
application, testing of algebraic structures is expected to be 
easier, faster, and more accurate than manual testing. The 
application uses Cayley table as a bridge between users and 
the program. The application limited to testing of algebraic 
structures of rings, commutative rings, division rings, fields, 
sub-rings, ideals, homomorphisms, epimorphisms, 
monomorphisms, and isomorphisms by using Java, an open-
source based programming language. Test results of the 
application program for the topic showed correct results 
with a relatively short processing time compared to manual 
testing. 
 
Index Terms—ring, field, ideal, homomorphism, abstract 
algebra , Cayley 

 

I.  INTRODUCTION 

Mathematics is a broad field of study, which studies 
properties and interactions between ideal objects. Several 
field studies that have been widely known are logic, 
calculus, algebra, optimization, probability, and statistics 
[4]. Algebra as one of the central branches of 
mathematics studies the rules of operations and relations 
on sets, as well as the possibility of formations and 
concepts that emerge from these rules. While the abstract 
algebra, also called modern algebra, is one branch of 
algebra which specifically studies algebraic structures, 
such as groups, rings, and fields [1,7]. 

Because of the abstract characteristic, algebraic 
structures are not easy to learn so that they are less 
desirable. Regarding this condition, an application of a 
computer program that can help the testing of algebraic 
structures is developed. With the help of a computer 
program, studying algebraic structures could be easier. 
Hence, common people will be interested in learning 
algebraic structures because the calculation process can 
be made easier, faster, and more accurate than manual 
testing [8]. Given the scope of algebraic structures is very 
large, this paper tested the scope of problems which only 
covers limited algebraic structures, including rings, 
division rings (sub-ring, commutative ring, division ring, 
ring homomorphism, ring epimorphism, embedding 

ring/ring monomorphism, ring isomorphism), and fields 
[9]. 

The purpose of this design is the production of an 
application program that can perform algebraic structure 
testing along with the details of the results obtained with 
the set of members in the form of character input. The 
program is expected to be a tool in the algebraic structure 
testing of rings, division rings (sub-ring, commutative 
ring, division ring, ring homomorphism, ring 
epimorphism, embedding ring/ring monomorphism, ring 
isomorphism), and fields. Thus, it can simplify, accelerate, 
and improve the thoroughness in algebraic structure 
testing. Moreover, the application program can be a 
reference for further research and can be developed. 

A. Rings 
A ring is an algebraic structure consisting of two 

binary operations: addition and multiplication, in which 
the structure is an Abelian group to the addition, a 
semigroup to the multiplication; and the multiplication is 
distributive to the addition. A ring (R, +, ×) is a nonempty 
set R with the binary operations of addition (+) and 
multiplication (×) on R which fulfills the following 
axioms. 
 
a. To the addition (+) 

Closed: for every a,b ε R, then a + b ε R.  
Associative: for every a,b,c  ε R, then  (a + b) + c = 
a + (b + c).  
Has an element of unity: the existence of the 
identity element α, that a + α = α + a = a.  
Has inverse: for every a ε R, found b, that  a + b = 
b + a = α.  
Commutative: for every a,b ε R, then a + b = b + a. 

b. To the multiplication (×) 
Closed: for every a,b ε R, then a × b ε R. 
Associative: for every a,b,c ε R, then (a × b) × c = a 
× (b × c). 

c. Distributive of the multiplication (×) to the addition 
(+) 
For every a,b,c ε R, if it fulfills: 
Left Distributive: for every a,b,c ε R qualifies a × 
( b + c ) = ( a × b ) + ( a × c ),  
Right Distributive: for every a,b,c ε R qualifies ( a 
+ b ) × c = ( a × c ) + ( b × c ), 
then R is distributive multiplication to the addition 
[6]. 
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B. Commutative Rings 
A commutative ring is a ring, in which the structure is 

an Abelian group to the addition, a commutative 
semigroup to the multiplication; and the multiplication is 
distributive to the addition. A commutative ring (R, +, ×) 
is a nonempty set R with the binary operations of addition 
(+) and multiplication (×) on R which fulfills the 
following axioms. 

 
a. To the addition (+) 

Closed: for every a, b ε R, then a + b ε R. 
Associative: for every a, b, c ε R, then (a + b) + c = a 
+ (b + c). 
Has an element of unity: the existence of the 
identity element α, that a + α = α + a = a.  
Has inverse: for every a ε R found b, that  a + b = b 
+ a = α.  
Commutative: for every a, b ε R, then  a + b = b + a. 

b. To the multiplication (×) 
Closed: for every a,b ε R, then a × b ε R. 
Associative: for every a,b,c ε R, then (a × b) × c = a 
× (b × c). 
Has an element of unity: found identity element β, 
that a × β = β × a = a. 
Commutative: for every a,b ε R, then  a × b = b × a. 

c. Distributive of the multiplication (×) to the addition 
(+)  
To every a, b, c ε R, if it fulfills:  
Left Distributive: for every a, b, c ε R  qualifies a × 
( b + c ) = ( a × b ) + ( a × c ), 
Right Distributive: for every a,b,c ε R qualifies ( a 
+ b ) × c = ( a × c ) + ( b × c ), then R is distributive 
multiplication to the addition [6]. 

C. Fields 
A field is an algebraic structure consisting of two 

binary operations: addition and multiplication, in which 
the set of the addition the structure is an Abelian group, 
the set of non-zero to the multiplication operation is an 
Abelian group, and the multiplication operation is 
distributive to the addition. A field (R, +, ×) is a 
nonempty set R with the binary operations of addition (+) 
and multiplication (×) on R which fulfills the following 
axioms. 
 
a. R to the addition (+) 

Closed: for every a,b ε R, then a + b ε R. 
Associative: for every a,b,c ε R, then  (a + b) + c = a 
+ (b + c). 
Has an element of unity: the existence of the 
identity element α, that a + α = α + a = a.  
Has inverse: for every a  ε R found b, that  a + b = b 
+ a = α. 
Commutative: for every a,b ε R, then  a + b = b + a. 

b. R of non-zero to the multiplication (×) 
Closed: for every a,b ε R, then a + b ε R. 
Associative: for every a,b,c ε R, then  (a × b) × c = a 
× (b × c). 
Has an element of unity: the existence of the 
identity element β, that a × β = β × a = a. 

Has inverse: for every a ε R-{0} found b, that  a × b 
= b × a = β. 
Commutative: for every a,b ε R, then  a × b = b × a. 

c. Distributive of the multiplication (×) to the addition 
(+). 
For every a, b, c ε R, if it fulfills: 
Left Distributive: for every a,b,c ε R qualifies a × 
( b + c ) = ( a × b ) + ( a × c ),  
Right Distributive: for every a,b,c ε R qualifies ( a 
+ b ) × c = ( a × c ) + ( b × c ), then R is distributive 
multiplication to the addition [5]. 

  

D. Sub-rings 
If (R, +, ×) is a ring, A is a non-zero set which is part 

of R (A  R). With the same operation as R, (A, +, ×) 
forms a ring; the set of A is called a sub-ring of the set R 
[5]. 

E. Ideal Sub-rings 
Ideal is a sub-ring which has a special characteristic, 

that is, closed to the multiplication element outside the 
sub-ring. A sub-ring is ideal if it is a left ideal (closed to 
the left multiplication element) and a right ideal (closed 
to the right multiplication element) [2]. 

F. Division Rings 
A division ring is a ring in which the non-zero 

elements form a group under the operation of 
multiplication (x) [4]. 

G. Ring Homomorphisms 
If (R,+,×) and (S,(+),(×)) are rings, then the mapping 

function f:R Æ S is called a homomorphism if: 
a. f(a+b) = f(a) (+) f(b) for every a, b ε R, 
b. f(a+b) = f(a) (+) f(b) for every a, b ε R, 
c.  f(unkes x) = unkes (x) [3]. 

H. Ring Epimorphisms 
If (R,+,×) and (S,(+),(×)) are rings, then the mapping 

function f:R Æ S is called a monomorphism if the 
mapping is a homomorphism mapping and onto 
(surjective) [3]. 

I. Ring Epimorphisms (Embedding Rings) 
If (R,+,×) and (S,(+),(×)) are rings, then the mapping 

function f:R Æ S is called a monomorphism if the 
mapping is a homomorphism mapping and injective (1-1) 
[11]. 

J. Ring Isomorphisms  
If (R,+,×) and (S,(+),(×)) are rings, then the mapping 

function f:R Æ S is called a monomorphism if the 
mapping is a homomorphism mapping and injective (1-1) 
and onto (surjective) [1]. 

K. Cayley Table 
Cayley table is a list made to show the operation between 
two elements on limited sets. The Cayley table is as Table 
1 [2].  
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TABLE 1. 
CAYLEY TABLE OF THE ADDITION OF MODULO 5

+5 0 1 2 3 4 
0 0 1 2 3 4 
1 1 2 3 4 0 
2 2 3 4 0 1 
3 3 4 0 1 2 
4 4 0 1 2 3 

 

II. METHODS 

The process of designing the application program used 
the Waterfall method model, with the stages as follows 
[10]. 

A. Design of Screen Display 
There are four screen displays made on the stage in 

designing the application program of algebraic structure 
testing. The draft of the screen display design is as 
follows. 

B. Design of Prologue/Opening Screen Display 
This is what users see when the program running. The 
prologue display contains program title, user’s identity, 
supervising lecturer’s identity, and JButton. JButton is 
useful to close the prologue display and open the main 
display. 

C. Design of Ring, Commutative Ring, Division Ring, and 
Field Testing Screen Display 

The display provides users to perform ring, 
commutative ring, division ring, and field testing. On 
screen, there are three main sub-tabs. Input Data sub-tab 
allows the user to input member elements and to fill the 
Cayley table; Analysis of Cayley Table sub-tab allows 
the user to see the testing results of the Cayley table; and 
Result Analysis sub-tab shows conclusions of the Cayley 
table testing results (as shown in figure 1). 

D. Design of Sub-ring and Ideal Testing Screen Display 
The display provides users to perform sub-ring and 

ideal testing. There are four main sub-tabs on the screen. 

Input the Elements sub-tab allows the user to enter 
member elements of two algebraic structures to test; Fill 
in the Cayley Table sub-tab lets the user input the Cayley 
table content for both algebraic structures; Sub-Ring 
Testing Results sub-tab shows the testing results of the 
Cayley table along with final conclusions about the 
relationship between the two algebraic structures. Ideal 
Testing sub-tab allows the user to fill out the Cayley table 
for Ideal testing (as shown in figure 2). 

E. Design of Ring Homomorphism Testing Screen 
Display 

The display provides users to perform ring 
homomorphism, ring epimorphism, ring monomorphism, 
and ring isomorphism testing. On screen, there are three 
main sub-tabs. Input the Elements sub-tab allows the user 
to enter the member elements of two algebraic structures 
to test; Fill In the Cayley Table sub-tab lets the user fill 
the content of the Cayley table for both algebraic 
structures; and Testing Result sub-tab shows the testing 
results of the Cayley table along with final conclusions 
about the relationship between the two algebraic 
structures (as shown in figure 3 and figure 4). 

F. Module Design (Pseudocode) 
In its development, the application program was built 

by forming the program modules. The modules in this 

Figure 1. Design of Data Input Sub-tab Display
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application program are 16 modules. Some of the 
modules are shown in this paper. 
Define Public 
Var counter1: integer  ; Var counter2: integer  ; Var counter3: 
integer  ; Var Count: integer  ;Var members: integer 
Var temp(): integer  ; Var location(): integer ; Var left(): 
integer  ; Var right(): integer ; Var Sum(): integer 
Var Mul(): integer ; Var Syarat(): integer  ; Var Kesimpulan: 
String 
CekAsosiatifTabelOperasiTambah Module 
Begin 

Count=0; counter1=1; counter2=1; counter3=1; 
For Loop counter1 to members 
Begin 

  For Loop counter2 to members 
Begin 
For Loop counter3 to members 

Begin 
temp = j_row, k_column  ; location = 

temp_column ; left = i_row, location_column   

temp = i_row, j_row ; location = 
temp_row  ; right = location_row, k_column 

 If left = right 
 Begin 
  Count+=1 
 End 
End 

       End 
End 

If Count = = members 
Begin 

 Sum (2) = TRUE 
End 

 Else 
Begin 

       Sum (2) = FALSE 
End 

End 
 

 
 

Figure 2. Design of Input the Elements Sub-tab Display 

 
Figure 3. Design of Fill in the Cayley Table Sub-tab Display 
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CekKomutatifTabelOperasiTambah Module 
 
Begin 

Count=0 
For Loop counter1 to members 
Begin 
For Loop counter2 to members  

Begin 
 left = i_row, j_column  
 right = j_row, i_column 

If left = right 
Begin 
 Count +=1 
End 

End 
 End 
 If Count == members 

Begin 
Sum(3) = TRUE 

End 
Else 

 Begin 
Sum (3) = FALSE 

 End 
End 
 
 
CekRing Module 
Begin 

If Sum(1, 2, 3, 4, 5) = Mul(1,2) = Distributive = 
TRUE 

Begin 
  Kesimpulan = RING 

If Mul(3) = TRUE  ;   
Begin 

  Kesimpulan = “RING KOMUTATIF” 
End 
Else   
Begin 

  Kesimpulan = “Is Not RING 
KOMUTATIF” 

End 
If Mul(4, 5) = TRUE 
Begin 

  Kesimpulan = “DIVISION RING” 
End 
Else   
Begin 

  Kesimpulan = “Is Not DIVISION RING”  
End 
If Mul(3,4,5) = TRUE  
Begin 

  Kesimpulan = “FIELD” 
End 
Else 
Begin 

  Kesimpulan = “Is Not FIELD” 
End 

End 
Else  Begin 
 Kesimpulan = “Is Not RING” 

End 
End 
 
CekHomomorfis module 
Begin 
 If  homomorfis 

Begin 
Syarat(1) = TRUE 
If surjektif  Begin 
Syarat(2) = TRUE 

End 
Else  
Begin 
Syarat(2) = FALSE 
End 
If injektif 
Begin 
Syarat(3) = TRUE 
End 

 
Figure 4. Design of Testing Result Sub-tab Display 
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Else  
Begin 
Syarat(3) = FALSE 
End 

 End 
 Else 

Begin 
 Syarat(1) = salah 
 End 

If syarat(1)=TRUE Begin 
Kesimpulan = “HOMOMORFISMA RING” 
End 
If syarat(1, 2)=TRUE 
Begin 
Kesimpulan = “EPIMORFISMA RING” 
End 
If syarat(1, 3)=TRUE  
Begin 
Kesimpulan = “MONOMORFISMA RING” 
End 
If syarat(1, 2, 3)=TRUE  
Begin 
Kesimpulan = “ISOMORFISMA RING” 
End 

End 

III. RESULTS AND DISCUSSION 

In order the program developed can be used properly, 
there are some specifications must be fulfilled. The 
hardware specifications are Intel Pentium Dual-Core 

CPU T4400 @2.20GHz Processor, 953 MB DDR RAM, 
160 GB Hard disk, and Logitech Mouse. While the 
softwares are Microsoft Windows XP Professional 
Service Pack 3 operating system and Java Library by 
installing the Java ™ Standard Edition Development Kit 
6 Update 2. For the programming design, writers used 
Eclipse SDK version 3.7.1 for logic module design and 
program interface. Then, to run the program, click 
UjiSA.jar file and select OK. After selecting JButton OK, 
the screen will show the main menu. Users have four tab 
options on the left menu. Each of tab menus has three to 
four sub-tabs, each sub-tab contains a display interface 
which has functions for each.  

On screen (Figure 5), there is JTextField which can be 
used to input the elements of algebraic structures to test. 
JButton "Add" is to add the elements in JTextField into 
JList; JButton "Delete" is to remove the elements; 
JButton "Delete All" is to empty JList; JButton "new" is 
to provide a new form for the testing process; and 
JButton "process" signifies if the user has finished 
entering the elements of algebraic structures and is ready 
to fill the Cayley table. Once the user has entered at least 
2 elements with the number of elements in a set, she/he 
can input the content of the Cayley table (as shown in 
figure 6).  

Besides testing results, conclusions of the testing can 
also be seen on ” Result Analysis” (see figure 7). 

 
 

 
 

 
 

 
 

Figure 5. Display Menu of Ring, Commutative Ring, Division Ring, and Field testing – Data Input Tab 
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Once the user has finished filling the content of the 
Cayley table, she/he can press JButton "Analysis". Result 
analysis from the Cayley table contains in "Testing 
Result" sub-tab. As the two previous tabs, in this tab the 
user can also access the information of each conclusion 
by pressing corresponding buttons (see figure 8).   

For users who want to print the test results, JButton is 
available to access the storage of the test results in .txt 

file. They can be printed via Notepad application program. 
JButton is on the fourth tab: Save the Result-About Us. 

To ensure the program's ability in performing the 
testing, it is necessary to compare the manual results and 
the program results. One testing using the Cayley table of 
Rings, Commutative Rings, Division Rings, Fields 
(Addition of Modulo 4) was done as shown in Table 2 
and Table 3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6. Display of Cayley Table Data Input 

 
 

Figure 7. Display of Result Analysis Sub-tab 
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TABLE 2.  

TESTING OF RINGS, COMMUTATIVE RINGS, DIVISION RINGS, 
FIELDS (ADDITION OF MODULO 4) 

+ 0 1 2 3 
0 0 1 2 3 
1 1 2 3 0 
2 2 3 0 1 
3 3 0 1 2 

 
 

TABLE 3.  

TESTING OF RINGS, COMMUTATIVE RINGS, DIVISION RINGS, 
FIELDS (MULTIPLICATION OF MODULO 4) 

* 0 1 2 3 
0 0 0 0 0 
1 0 1 2 3 
2 0 2 0 2 
3 0 3 2 1 

 

Conclusions derived from manual and program testing 
give the same result. Table 2 and Table 3 are rings, 
commutative rings, not division rings and fields. Here is 
the analysis and the program’s testing results. 
 
Result Analysis from Cayley Table (Table 2 & Table 3) 
 
(p1) Closed to the operation of (+) 
Æ For all a, b of R, the result of a + b is also a member of 
R 

The testing result above (p1) stated that based on the 
Cayley table of the operation of (+) and the pseudocode, 
the structure qualifies the closed characteristic to the 
operation of (+). 
 
(p2) Elements that generate the left and right sides 
together :  
0+(0+0) = 0  is equal to Æ 0 = (0+0)+0 
0+(0+1) = 1  is equal to Æ 1 = (0+0)+1 
0+(0+2) = 2  is equal to Æ 2 = (0+0)+2 
0+(0+3) = 3  is equal to Æ 3 = (0+0)+3 
0+(1+0) = 1  is equal to Æ 1 = (0+1)+0 
0+(1+1) = 2  is equal to Æ 2 = (0+1)+1 
0+(1+2) = 3  is equal to Æ 3 = (0+1)+2 
0+(1+3) = 0  is equal to Æ 0 = (0+1)+3 
0+(2+0) = 2  is equal to Æ 2 = (0+2)+0 

0+(2+1) = 3  is equal to Æ 3 = (0+2)+1 
0+(2+2) = 0  is equal to Æ 0 = (0+2)+2 
0+(2+3) = 1  is equal to Æ 1 = (0+2)+3 
0+(3+0) = 3  is equal to Æ 3 = (0+3)+0 
0+(3+1) = 0  is equal to Æ 0 = (0+3)+1 
0+(3+2) = 1  is equal to Æ 1 = (0+3)+2 
0+(3+3) = 2  is equal to Æ 2 = (0+3)+3 
 
Associative to the operation of (+) 
Æ For all a, b, c of R, apply a + (b + c) = (a + b) + c 
 

The testing result above (p2) stated that based on the 
Cayley table of the operation of (+), the elements qualify 
the associative characteristic to the operation of (+). 
 
(p3) Commutative to the operation of (+) 
Æ For all a, b of R, apply a + b = b + a 
 

The testing result above (p3) stated that based on the 
Cayley table of the operation of (+), the elements qualify 
the commutative characteristic to the operation of (+). 
 
(p4) Having an element of unity for the operation (+), 
that is 0 
 

 
Figure 8. Display of Ring Homomorphism tab on Testing Result sub-tab 
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The testing result above (p4) stated that based on the 
Cayley table of the operation of (+), the elements have an 
element of unity to the operation of (+). 
 
(p5) Inverse of each element contained in the operation of 
(+)  
Inverse of 0 is 0; Inverse of 1 is 3; Inverse of 2 is 2; 
Inverse of 3 is 1 
 

The testing result above (p5) stated that based on the 
Cayley table of the operation of (+), every element has 
inverse to the operation of (+). 

 
(p6) Closed to the operation of (*) 
Æ For all a, b of R, the result of a * b is also a member of 
R 
 

The testing result above (p6) stated that based on the 
Cayley table of the operation of (*), the elements qualify 
the closed characteristic to the operation of (*). 
 
(p7) Elements that generate the left and right sides 
together:  
 
0*(0*0) = 0   is equal to Æ 0 = (0*0)*0 
0*(0*1) = 0  is equal to Æ 0 = (0*0)*1 
0*(0*2) = 0  is equal to Æ 0 = (0*0)*2 
0*(0*3) = 0  is equal to Æ 0 = (0*0)*3 
0*(1*0) = 0  is equal to Æ 0 = (0*1)*0 
0*(1*1) = 0  is equal to Æ 0 = (0*1)*1 
0*(1*2) = 0  is equal to Æ 0 = (0*1)*2 
0*(1*3) = 0  is equal to Æ 0 = (0*1)*3 
0*(2*0) = 0  is equal to Æ 0 = (0*2)*0 
0*(2*1) = 0  is equal to Æ 0 = (0*2)*1 
0*(2*2) = 0  is equal to Æ 0 = (0*2)*2 
0*(2*3) = 0  is equal to Æ 0 = (0*2)*3 
0*(3*0) = 0  is equal to Æ 0 = (0*3)*0 
0*(3*1) = 0  is equal to Æ 0 = (0*3)*1 
0*(3*2) = 0  is equal to Æ 0 = (0*3)*2 
0*(3*3) = 0  is equal to Æ0 = (0*3)*3 
 
Associative to the operation of (*) 
Æ For all a, b, c of R, apply a * (b * c) = (a * b) * c 
 

The testing result above (p7) stated that based on the 
Cayley table of the operation of (*), the elements qualify 
the associative characteristic to the operation of (*). 
 
(p8) Commutative to the operation of (*) 
Æ For all a, b of R, apply a * b = b * a 
 

The testing result above (p8) stated that based on the 
Cayley table of the operation of (*), the elements qualify 
the commutative characteristic to the operation of (*). 
 
(p9) Having an element of unity for the operation (*), that 
is 1 
 

The testing result above (p9) stated that based on the 
Cayley table of the operation of (*), the elements have an 
element of unity to the operation of (*). 
 
(p10) Inverse of each non-zero element contained in the 
operation of (*): 
Inverse of 1 is 1;  Element 2 has no inverse ; Inverse of 3 
is 3 
 

The testing result above (p10) stated that based on the 
Cayley table of the operation of (*), not every element 
has inverse to the operation of (*). Element 2 has no 
inverse because there is no column listing the elements of 
unity of the operation of (*), i.e. 1 in row 2.  

 
(p11) Checking the left distributive (ld):  
 
0*(0+0) = 0  is equal to Æ 0 = (0*0)+(0*0) 
0*(0+1) = 0  is equal to Æ 0 = (0*0)+(0*1) 
0*(0+2) = 0  is equal to Æ 0 = (0*0)+(0*2) 
0*(0+3) = 0  is equal to Æ 0 = (0*0)+(0*3) 
0*(1+0) = 0  is equal to Æ 0 = (0*1)+(0*0) 
0*(1+1) = 0  is equal to Æ 0 = (0*1)+(0*1) 
0*(1+2) = 0  is equal to Æ 0 = (0*1)+(0*2) 
0*(1+3) = 0  is equal to Æ 0 = (0*1)+(0*3) 
 
Æ Left Distributive (ld) Fulfilled 
 
Checking the right distributive (rd):  
 
(0+0)*0 = 0  is equal to Æ 0 = (0*0)+(0*0) 
(0+0)*1 = 0  is equal to Æ 0 = (0*1)+(0*1) 
(0+0)*2 = 0  is equal to Æ 0 = (0*2)+(0*2) 
(0+0)*3 = 0  is equal to Æ 0 = (0*3)+(0*3) 
(0+1)*0 = 0  is equal to Æ 0 = (0*0)+(1*0) 
(0+1)*1 = 1  is equal to Æ 1 = (0*1)+(1*1) 
(0+1)*2 = 2  is equal to Æ 2 = (0*2)+(1*2) 
(0+1)*3 = 3  is equal to Æ 3 = (0*3)+(1*3) 
 
Æ Right Distributive (rd) Fulfilled 
 

All the elements satisfy the distributive properties of 
the operations of (*) on the operations of (+) as the 
fulfillment of left distributive and right distributive. 

The testing result above (ld & rd) stated that based on 
the Cayley table of the operation of (+) and the Cayley 
table of the operation of (*), the elements qualify the 
distributive characteristic to the operation of (+). 
 
Conclusion of Result Analysis from Cayley Table (table 2 
& table 3) 
 
With members : 0, 1, 2, 3 
Algebraic structure (R,+,*) is a ring, because it qualifies :  
Æ (R,+) : closed, associative, commutative, has an 
element of unity, all elements have inverse 
Æ (R,*) : closed, associative 
Æ Operations (*) is distributive to the operation of (+) 
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Algebraic structure (R,+,*) is a commutative ring, 
because it qualifies:  
Æ (R,+) : closed, associative, commutative, has an 
element of unity, all elements have inverse 
Æ (R,*) : closed, associative, commutative 
Æ Operations (*) is distributive to the operation of (+) 
 
Algebraic structure (R,+,*) is not a division ring, because 
not every element has inverse in the operation (*). 
 
Algebraic structure (R,+,*) is not a field, because not 
every element has inverse in the operation of  (*). 

IV. CONCLUSION 

The application program for ring testing operated 
properly. It gave results as same as manual testing, but in 
a shorter time and at higher accuracy as it was done by 
the computer. The application program of ring testing can 
be used as a testing tool that makes the testing more 
effective and efficient. The accuracy of the testing results 
depends on the thoroughness of data content inputting in 
the Cayley table. If the user is not careful in the data entry, 
the testing results are certainly inaccurate.  
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