
Adding Domain Model Description for Web
Services

Hongyu Li

Beijing Key Laboratory of Information Service Engineering, Beijing Union University, Beijing, China
Email: ldthongyu1@buu.edu.cn

Yuxin Wang

College of Information, Beijing Union University, Beijing, China
Email: xxtyuxin@buu.edu.cn

Jiazheng Yuan

Beijing Key Laboratory of Information Service Engineering, Beijing Union University, Beijing, China
Email: xxtjiazheng@buu.edu.cn

Abstract—For helping Web service consumers establish the
corresponding relationship between terms of the domain
conceptual model and date types in WSDL, this paper
proposes a method to embed semantic annotation in the
definition of data types in WSDL with XSLT
transformation. So Web service consumers can understand
better the meaning of the data with this bidirectional
relationship and thus further ensure they use Web services
correctly. The additional benefit obtained from this method
is that Web service annotators are able to find
corresponding concept terms not built in the conceptual
model so as to help them accomplish annotating
conveniently.

Index Terms—Web services, WSDL, conceptual model,
semantic annotation, XSLT

I. INTRODUCTION

 Web service is a common distributed system. It can
integrate data scattered physically. So long as Web
service consumers (users) acquire the description file
WSDL [1] of Web services, they can use the Web
services like local services. Although Web services
provide the mechanism of data integration, the
prerequisite of data integration is that the Web service
consumers fully aware of the data sources. They should
understand not only the format of the data items but also
the semantics of the data items. Different data sources
have different appellations to data of the same semantics,
and have different semantics to data of the same
appellations. If the Web service mechanism is not
expanded to reflect the semantic information of the data,
data integration task will be difficult to complete.

The data items described by WSDL can be added
semantic information, through the expansion of extension

attributes and elements in WSDL. In order not to destroy
the format and function of the original WSDL, while
making data items annotation, now we usually adopt the
mapping between data items and semantic models. The
relevant standards have also been proposed, such as
WSDL-S [2], SAWSDL [3] standards. The applications
of those standards [4]-[8] and the other applications based
on semantic annotation [9]-[12] are beginning to appear.
The emphasis of these semantic annotations is not further
explanation of the meaning of the data types, i.e. the
explanation of metadata, but the semantic transformation
of the data model, so that data defined are converted into
the data represented by a semantic model. The result
generated is usually concrete instances of the
corresponding semantic model, so that semantic tools can
easily deal with the instances further. In practice, the Web
service consumers want that there is a way to implement
the mapping between the data items in Web service and
their semantic meanings. However, these standards do not
give the generic method for the bidirectional mapping
between them. Paper [13] proposed a method that extracts
semantic information and maps the information extracted
to CIDOC CRM conceptual model [14]. But the
conceptual model is contained in the XSLT
transformation file, thus the definition of the conceptual
model is not independent, and the transformation function
is not general. This paper proposed a semantic annotation
method by which the WSDL data format is further
explained and a semantic annotation output file is
produced. A mapping between the data items defined by
WSDL and the domain conceptual model can be reflected
clearly in the output file. In order to help WSDL file
annotators discover the annotation terms not mapped, the
transformation can be used iteratively to improve the
result of annotation, finally all of the annotated terms
have corresponding concepts in the domain conceptual
model. Corresponding author: YuXin Wang (xxtyuxin@buu.edu.cn)

JOURNAL OF SOFTWARE, VOL. 9, NO. 2, FEBRUARY 2014 417

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.2.417-424

II. SCHEME FOR ANNOTATION AND TRANSFORMATION OF
DATA TYPE

Both WSDL 2.0 and WSDL 1.0 contain the element
Types which encloses data type definitions that are
relevant for the exchanged messages. For maximum
interoperability and platform neutrality, WSDL prefers
the use of XML Schema as the canonical type system,
and treats it as the intrinsic type system. The element
complexType in XML Schema is used to define complex
data type. The element simpleType is generally used to
define simple data type. In order to expound the
semantics of the data types, additional attributes are
added to the definition of the data types. An additional
container element for embedding semantic models can be

defined, since WSDL already allows extension elements
within the element wsdl:description.

As shown in Figure 1, the domain:conceptualModel
part indicating a domain conceptual model is embedded
in a WSDL file. The mapping from the data types defined
in WSDL to the conceptual model terms(concepts),
which is referred as DtoC mapping, can be established
and an output file of DtoC mapping will help the Web
service annotators make comprehensive semantic
annotation. Similarly, the mapping from the conceptual
model terms to the data types, which is referred as CtoD
mapping, can be built and an output file of CtoD mapping
will help the Web service consumers understand the
semantics of the data types correctly.

Figure 1. The scheme for annotation and transformation of data types

The semantic annotation is usually implemented by
the experts in a domain who need to collaborative with
the Web service providers. After a WSDL file have been
finished editing by the Web service provider, the extra
attributes of the data types defined in the WSDL file are
added by the domain experts and then the relationship
between these attributes and the concepts in the domain
conceptual model can be established. The relationship
established above is a direct reflection of the relevance
between s: schema elements and domain:
conceptualModel elements in Figure 1. The process of
establishing this relationship is also understood as adding
semantic information to the data type defined. A specific
method will be introduced in subsequent section. The
method which does not change with the changes in the
conceptual model and data types has the versatility with
respect to both CtoD mapping and DtoC mapping and so
it has laid the groundwork for transforming itself into a
universal service. The Web service consumers will gain
the output file after they submit the WSDL file which
they have received from a Web service provider to such
service. The same solution can be applied to other parts
of the WSDL file, such as message element, portType
element and interface element in WSDL 2.0. Thus, those
parts can also get semantic annotating.

Adding semantic annotations to the data type of
WSDL involves multiple parties. The stakeholders, such
as domain conceptual model constructors, semantic

annotators, Web service providers and Web service users,
will be able to co-operate by means of the solution
proposed in this paper which provides an efficient
mechanism to achieve the semantic description of Web
services. The relationship between multiple parties is
shown in Figure 2.

Figure 2. The cooperative relationship among the stakeholders who

are shown with the shaded blocks

The constructors of the domain conceptual model
are responsible for building the model which contains the
complete definition of domain concepts and is generally
published through a Web server. The semantic annotators
are responsible for semantic annotation of the data types
in WSDL, that is, to add semantic information for them.

418 JOURNAL OF SOFTWARE, VOL. 9, NO. 2, FEBRUARY 2014

© 2014 ACADEMY PUBLISHER

They also take charge of embedding the conceptual
model into the WSDL file. The model embedded is not a
complete semantic model, but a simplified model, as long
as it can explain the concepts used in the WSDL file. The
Web service providers are responsible for the definition
of the service interface through WSDL and its
implementation. Their expertise is in the areas of
computer software, not the field described by the
conceptual model. The semantic annotators and the Web
service users can adopt and implement the solution
proposed in this paper in an open and Web service-based
fashion. So semantic annotators using this Web service
can get the output of CtoD mapping based XSLT [15]
and the Web service users request the same service to get
the output of DtoC mapping based XSLT in order to
understand exactly the meaning of the data type defined
in the WSDL file. Finally, the scheme showed in Figure 2

offers protection from misunderstanding of the data in the
Web service whenever it is used by its consumers.

III. IMPLEMENTATION OF ANNOTATION AND
TRANSFORMATION OF DATA TYPES

Because CIDOC CRM [16] is an ontology widely
used in the field of cultural heritage and has relatively
perfect definition of the domain concepts, so this paper
takes it as an example of the semantic annotation method.
But the method is not restricted to CIDOC CRM model.

The conceptual model can be embedded into the
Types element totally, because it allows the elements in it
to expand. Relevant elements used to define the data
types can explain the semantics of the data types by
adding cidoc:E attributes. The specific form is as follows.

<wsdl:definitions xmlns:wsdl=http://schemas.xmlsoap.org/wsdl/ xmlns:s=http://www.w3.org/2001/XMLSchema

xmlns:cidoc="http://cidoc.ics.forth.gr" …>
<wsdl:types>
 <s:schema …
 <s:complexType name=" a complex type" cidoc:E=" a concept in the concept model " >
 …
 </s:complexType>
 <s:element name=" a simple type " cidoc:E=" a concept in the conceptual model "/>
 …
 </s:schema>
 <cidoc:conceptualModel> … </cidoc:conceptualModel>
</wsdl:types>
…

</ wsdl:definitions >

The namespace of relevant conceptual model can be
introduced through namespace cidoc. The conceptual
model, which is also known as semantic model, is
described by the element cidoc:conceptualModel and its
child elements. There is no specific restriction on the
establishment of the conceptual model. The real purpose
of introducing cidoc:E attribute is to establish a
corresponding relationship between the data type defined
by XML Schema (whether it is complex or simple) and
certain concept in the conceptual model. The introduction
of the conceptual model is to reflect the mutual relevance
of various concepts in the model, thus indirectly reflect
the mutual relationship between various data types. This,
for the Web service consumers to fully understand the
data provided by the service, paves a way of showing its
internal relationship. If we want to introduce other
conceptual model, we need only to replace the cidoc

conceptual model and its namespace with the
corresponding conceptual model and the namespace.
Although the annotation given above is in WSDL 1.0
format, it is also suitable to WSDL 2.0.

After completing the above-mentioned annotation
and the introduction of conceptual model, we need also to
establish the relationship from the conceptual model to
the data type defined by WSDL. Although its reverse
relationship is reflected in the cidoc:E attribute value, in
practice, what Web service consumers really need is a
description of bidirectional mapping between the
conceptual model and the data type in WSDL, so as to
help them find the corresponding WSDL data type from
the conceptual model. What follows is how to use XSLT
to implement the function of the bidirectional mapping
between the conceptual model and the data type in
WSDL.

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" xmlns:wsdl=http://schemas.xmlsoap.org/wsdl/

xmlns:cidoc=http://cidoc.ics.forth.gr …>
 …
 <xsl:template match="//wsdl:types">
 <cidoc:mappingAnnotation>

JOURNAL OF SOFTWARE, VOL. 9, NO. 2, FEBRUARY 2014 419

© 2014 ACADEMY PUBLISHER

 <xsl:apply-templates select=" cidoc:conceptualModel "/>
 </cidoc:mappingAnnotation>
 </xsl:template>
 <xsl:template match="cidoc:conceptualModel">
 <xsl:element name="{name()}"> <xsl:apply-templates/> </xsl:element>

 </xsl:template>

The above XSLT segment is the first part, in which the

ellipsis denotes that some transformation details are
omitted, e.g. some auxiliary namespaces, because they
have no influence on the description of the entire
transformation method. The XSLT first searches for
wsdl:types node in the WSDL file. When the node
matches, it writes the root node cidoc:mappingAnnotation
into the output file, then it searches the root node

cidoc:conceptualModel of the conceptual model further.
When the node is matched, it outputs the node and
continues searching along the root of the conceptual
model. The main objective of this segment is to locate the
conceptual model in the WSDL file, then to traverse the
entire nodes of the conceptual model, so as to check
whether the node traversed matches certain data type in
the WSDL file.

<xsl:template match="cidoc:conceptualModel//*">
 <xsl:element name="{name()}">
 <xsl:variable name="elementName" select="name()"/>
 <xsl:if test="starts-with($elementName,'cidoc:E')">
 <xsl:attribute name="rdf:resource">
 <xsl:for-each select=" //*[@cidoc:E]">
 <xsl:if test="concat('cidoc:',@cidoc:E)=$elementName">
 <xsl:text>[</xsl:text>
 <xsl:value-of select="concat(name(),'/',@name)"/>
 <xsl:text>]</xsl:text>
 </xsl:if>
 </xsl:for-each>
 </xsl:attribute>
 </xsl:if>
 <xsl:apply-templates/>
 </xsl:element>
 </xsl:template>

</xsl:stylesheet>

The above template will match all of the subnodes of
cidoc:conceptualModel. When matching a subnode, the
template first outputs the node, then judges whether to
add rdf:resource attribute for it according to the
following condition: If, in the WSDL file, the attribute
value of cidoc:E for a data type is the same as the current
element name, then the template needs to add a
rdf:resource attribute to the element, the attribute value is
"element name of the data type / the attribute value of the
name for this element", and is bracketed in "[]"; if the
condition is not met, then the template does not add
rdf:resource attribute to it. Through the above steps, a
concept in the conceptual model can corresponds with
WSDL data type items. Because many data types can
correspond with the same concept, "[]"can be the
delimiters of every data type corresponded with. If there
are many "[]" in a rdf:resource attribute value, then this
concept corresponds with many data types. The use of
"[]" is merely for showing the importance of the
correspondence. For ease of further processing with
conventional multi-attribute valued semantic disposal tool,
we can use blank as the delimiter among the multi-

attribute values instead of "[]". Before rdf:resource
attribute is outputted, further check has been made on the
type of element matched. Because, in the CIDOC CRM
model, cidoc:P type concept denotes predicate, it has no
corresponding WSDL data type, there is no need to add
rdf:resource attribute for these elements. Here, we only
discussed CIDOC CRM predicate. But it does not lose
generality. Because, in a conceptual model, there are
always certain concepts that are used to describe the
conceptual model itself. These concepts does not
correspond with outside data, there is no need to add
some attributes that reflect the correspondence
relationship like predicate in CIDOC CRM. After
mapping attributes are added to concepts, the
transformation template should be used continually, so
that the subelements of the element get the same
treatment. After all concepts are traversed, all mapping
relationships are added to their corresponding
rdf:resource attributes.

What follows is an example showing how to
establish the mapping relationship between the data types
defined and the conceptual model in WSDL and how to

420 JOURNAL OF SOFTWARE, VOL. 9, NO. 2, FEBRUARY 2014

© 2014 ACADEMY PUBLISHER

form the mapping relationship between the conceptual
model and the WSDL data type through the above XSLT
transformation. In the example, the Types part in WSDL
uses XML Schema to define a complex data type called
painting, and it contains a more detailed description item
called creator. The name and structure of this data type
denote that it represents a painting (picture), and contains
more detailed information of the painting, such as its
creator (maker). But the name of the data type and the
structure of the definition is not enough for a Web service
consumer to acquire the above meaning, i.e. we cannot

suppose the Web service consumer to understand the
semantics of painting and creator and their relationship.
Thus, domain conceptual model is needed to further
annotate the data type. To this end, cidoc:E attribute
needs to be added to the corresponding elements of
painting and creator to demonstrate the relationship
between the data type and certain concept in the
conceptual model, and the conceptual model
demonstrating the above relationship is introduced in
cidoc:conceptualModel root element.

<wsdl:types>
 <s:schema …>
 <s:complexType name="Painting" cidoc:E="E22.Man_Made_Object">
 <s:sequence>
 <s:element name="creator" type="s:string" cidoc:E="E21.Person"/>
 <s:element name="timeSpan" type="s:date" cidoc:E="E52.Time-Span"/>
 <s:element name="type" type="s:string" cidoc:E="E55.Type"/>
 <s:element name="preservationPlace" type="s:string" cidoc:E="E53.Place"/>

 …
 </s:sequence>
 </s:complexType>
 …
 </s:schema>
 <cidoc:conceptualModel>
 <cidoc:E22.Man_Made_Object>
 <cidoc:P108B.was_produced_by>
 <cidoc:E12.Production>
 <cidoc:P14F.carried_out_by> <cidoc:E21.Person/> </cidoc:P14F.carried_out_by>
 </cidoc:E12.Production>
 </cidoc:P108B.was_produced_by>
 </cidoc:E22.Man_Made_Object>
 …
 </cidoc:conceptualModel>
</wsdl:types>

The relationship between the concepts E21 and E22
are defined in cidoc:conceptualModel showing that E22
is a man-made object and is made by E21 i.e. man. This
is a general method in cultural relic's field to use standard
conceptual model to describe relationship between
concepts, the semantics of which is not ambiguous to
field experts. Through the mapping relationship reflected
by cidoc:E in the complex data type, it is clear: painting

is a man-made object, and is made by creator that has the
characteristic of a man.

In order to extract concepts used for annotating, and
add rdf:resource attribute for them so as to reflect the
corresponding relationship between the concepts in the
conceptual model and the WSDL data types, we need to
run the XSLT transformation program given above. The
result is as follows:

<cidoc:mappingAnnotation xmlns:s=http://www.w3.org/2001/XMLSchema xmlns:cidoc=http://cidoc.ics.forth.gr

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" …>
 <cidoc:conceptualModel>
 <cidoc:E22.Man_Made_Object rdf:resource="[s:complexType/Painting]">
 <cidoc:P108B.was_produced_by>
 <cidoc:E12.Production rdf:resource="">
 <cidoc:P14F.carried_out_by>
 <cidoc:E21.Person rdf:resource="[s:element/creator]"/>

JOURNAL OF SOFTWARE, VOL. 9, NO. 2, FEBRUARY 2014 421

© 2014 ACADEMY PUBLISHER

 </cidoc:P14F.carried_out_by>
 </cidoc:E12.Production>
 </cidoc:P108B.was_produced_by>
 </cidoc:E22.Man_Made_Object>
 …
 </cidoc:conceptualModel>
 …

</cidoc:mappingAnnotation>

From the above result which is also known as the CtoD

mapping output, we can see that there exist corresponding
data types in WSDL for concepts E22 and E21, while
there is no relationship for other E entity concepts, there
is no need to add rdf:resource attribute for P concept
because it is a predicate in the conceptual model.

IV. METHOD OF ITERATIVE ANNOTATING

In order to facilitate semantic annotations of WSDL
files, the annotation work is usually carried out by
iteration. First, add annotations, i.e. cidoc:E attributes to
data types defined in WSDL, then, establish
corresponding conceptual models for them. This process
repeats, until the data types needed are all annotated.

There are many data types defined in a complex WSDL
file. During the annotation process, we usually want to
know which concept objects used for annotating are not
established in the conceptual model. If, during the above
transformation process, those concepts that do not have
corresponding relationship in the conceptual model but
have used in the annotations of the data types are listed,
then the conceptual models will be improved so that all of
the annotation concepts have their own positions in the
conceptual model. In order to implement this function,
we can add an additional template in the above XSLT
transformation file. The specific form of the template is
as follows:

<xsl:template match="s:schema//*[@cidoc:E]">
 <xsl:variable name="cidocName" select="concat('cidoc:',@cidoc:E)"/>
 <xsl:if test="not(//cidoc:conceptualModel//*[name()=$cidocName])">
 <xsl:element name="{name()}">
 <xsl:attribute name="name"> <xsl:value-of select="@name"/> </xsl:attribute>
 <xsl:attribute name="cidoc:E"> <xsl:value-of select="$cidocName"/> </xsl:attribute>
 </xsl:element>
 </xsl:if>

</xsl:template>

The template matches all of the attributes embracing
cidoc:E in Types, then adds "cidoc:" for them as prefixes,
so that they become the values of the variable cidocName,
then traverses the whole conceptual models written in
cidoc:conceptualModel, so as to determine whether the
nodes with the above variable as their element names
have never occurred in the models. If this condition is
true, this means the annotation has no corresponding node
in the conceptual model, i.e. no corresponding concept

item, thus this data type and its relevant semantic
annotation needs to be outputted, so that conceptual
models can be updated continuously, until all concepts
are interpreted. In order to distinguish the above output
results and the corresponding relationship between
concepts and data types, the application of the above
template can be put into the template matching
"//wsdl:types", behind the template
cidoc:conceptualModel. The specific form is as follows:

<xsl:template match="//wsdl:types">
 <cidoc:mappingAnnotation>
 <xsl:apply-templates select="cidoc: conceptualModel "/>
 </cidoc:mappingAnnotation>
 <cidoc:noMapping> <xsl:apply-templates select="s:schema//*[@cidoc:E]"/> </cidoc:noMapping>
 </xsl:template>

From the above template we will see: the output of
CtoD mapping eventually put into
cidoc:mappingAnnotation element, while concepts not

interpreted are listed in cidoc:noMapping element. If
there is no element in cidoc:noMapping element, then the
conceptual model constructed is complete, otherwise all

422 JOURNAL OF SOFTWARE, VOL. 9, NO. 2, FEBRUARY 2014

© 2014 ACADEMY PUBLISHER

of the concepts listed in cidoc:noMapping element need
to be interpreted in turn. Using the previous example, the

following illustrates the execution result of the template
in the cidoc:noMapping element.

<cidoc:noMapping>
 <s:element name="timeSpan" cidoc:E="cidoc:E52.Time-Span"/>
 <s:element name="type" cidoc:E="cidoc:E55.Type"/>
 <s:element name="preservationPlace" cidoc:E="cidoc:E53.Place"/>
</cidoc:noMapping>

The conceptual model described in cidoc:
conceptualModel element does not contain the definitions
of some concepts, such as E52.Time-Span, E55.Type and
E53.Place. But when the element of Painting is annotated,
the above three concepts are used. The user of Web
service is likely to lead to misunderstanding because the
elements annotated are often easily misreading. In order
to avoid the case, the concepts for annotating must be
described at least once in the conceptual model. The
function of the template given above is to list all of the
concepts which are not defined in the conceptual model.

The name and cidoc:E attributes of an element in
cidoc: noMapping element can be thought of as the
output which reflect the DtoC mapping. The full list of
the elements in cidoc: noMapping obtained before the
embedded conceptual model is established entirely
reflects the correspondence between data types and
concepts, and so helps the constructor of the conceptual
model determine the range of concepts in the model.

V. CONCLUSION

The accuracy of data understanding plays a key role
in data integration and system merge. One of the
functions for annotating data types defined in WSDL is to
facilitate Web service consumers to understand the
semantics of each data type. The semantic annotation can
be implemented through the forming of the corresponding
relationship between the data types and the concepts in
certain field conceptual mode. When Web service
consumers use data obtained, they not only need to
understand the relationship between the data types of
these data and some conceptual models, but also hope to
discover the relationship between concepts and data types
from these conceptual models in complex applications,
that is, the bidirectional mapping relationships between
the concepts and the data types facilitate further
understanding of the data. The XSLT-based
transformation mapping method given in this paper let
semantics annotators of WSDL data types and user of
WSDL files, while annotating or reading the data types
defined in WSDL, acquire the corresponding relationship
between the concepts and the data types by embedding
the domain conceptual model into the WSDL file, and
introducing additional semantic attributes into the
definitions of the data types and does not destroy the
original WSDL data type definitions. And the semantics
annotators can acquire concept list of uncompleted

interpretations, so that they can know where the
conceptual models need to be improved further.

ACKNOWLEDGMENT

This work is supported by the grant from National
Natural Science Foundation of China (No. 61271369).

REFERENCES
[1] Roberto Chinnici, Jean-Jacques Morea, Arthur Ryman,

Sanjiva Weerawarana, Web Services Description Language
(WSDL) Version 2.0 Part 1: Core Language, W3C
Recommendation, 2006.

[2] R. Akkiraju, J. Farrell, J. Miller, M. Nagarajan, M. T.
Schmidt, A. Sheth and K., Verma, Web Service Semantics -
WSDL-S, Technical report, W3C Member Submission,
2005.

[3] Farrell Joel, Lausen Holger, Semantic annotations for
WSDL and XML schema, W3C recommendation, 2007.

[4] PMK Gordon, CW Sensen, “Creating Bioinformatics
Semantic Web Services from Existing Web Services: A
Real-World Application of SAWSDL,” Web Services,
2008. ICWS '08. IEEE International Conference, pp. 608 -
614, 2008.

[5] Kashif Iqbal , Marco Luca Sbodio , Vassilios Peristeras ,
Giovanni Giuliani, “Semantic Service Discovery using
SAWSDL and SPARQL,” Proceedings of the 2008 Fourth
International Conference on Semantics, Knowledge and
Grid, pp. 205-212, 2008.

[6] GC Hobold, F Siqueira, “Discovery of Semantic Web
Services Compositions Based on SAWSDL Annotations,”
Web Services (ICWS), 2012 IEEE 19th International
Conference, pp.280 - 287, 2012.

[7] Dengping Weia, Ting Wanga, Ji Wangc, Abraham
Bernsteinb, “SAWSDL-iMatcher: A customizable and
effective Semantic Web Service matchmaker,” Web
Semantics: Science, Services and Agents on the World
Wide Web, vol. 9, pp. 347-504, December 2011.

[8] Martha Varguez-Moo, Francisco Moo-Mena, Victor Uc-
Cetina, “Use of Classification Algorithms for Semantic
Web Services Discovery,” Journal of Computers, vol. 8,
No 7: Special Issue: Advances in Internet Technologies
and Applications, pp. 1633-1634, 2013.

[9] R. Wang, S. Ganjoo, J. Miller, and E. Kraemer, “Ranking-
Based Suggestion Algorithms for Semantic Web Service
Composition,” in Proceedings of 2010 IEEE International
Workshop on Web in conjunction with the 2010 IEEE
International Conference on Web Services (ICWS), pp.
606-613, July 2010.

[10] Matthias Klusch, Patrick Kapahnke, Ingo Zinnikus,
“Hybrid Adaptive Web Service Selection with SAWSDL-
MX and WSDL-Analyzer,” The Semantic Web: Research
and Applications, vol. 5554, pp. 550-564, 2009.

[11] Yingjie Song, Rong Chen, Yaqing Liu, “A Non-Standard
Approach for the OWL Ontologies Checking and
Reasoning,” Journal of Computers, vol. 7, No 10: Special

JOURNAL OF SOFTWARE, VOL. 9, NO. 2, FEBRUARY 2014 423

© 2014 ACADEMY PUBLISHER

Issue: Special Issue: Advances in Information and
Computers, pp. 2454-2461, 2012.

[12] Bo Hu, Zhi-Xue Wang, Qing-Chao Dong, “A Novel
Context-aware Modeling and Reasoning Method based on
OWL,” Journal of Computers, vol. 8, No 4, pp. 943-950,
2013.

[13] Yuxin Wang, Hongyu Li, “Annotating WSDL by CIDOC
CRM,” Proceedings of the 2nd International Conference
on Interaction Sciences: Information Technology, Culture
and Human (ICIS'09) , vol. III, pp.1389-1392, 2009.

[14] Nick Crofts, Martin Doerr, Tony Gill, Stephen Stead,
Matthew Stiff, Definition of the CIDOC Conceptual
Reference Model Version 4.2, The International Committee
for Doc-umentation of the International Council of
Museums (ICOM-CIDOC), Paris, 2005.

[15] James Clark, XSL Transformations (XSLT) Version 1.0,
W3C Recommendation, 1999.

[16] Martin Doerr, “The CIDOC conceptual reference module:
an ontological approach to semantic interoperability of
metadata,” AI Magazine, vol. 24, pp. 75-92, 2003.

424 JOURNAL OF SOFTWARE, VOL. 9, NO. 2, FEBRUARY 2014

© 2014 ACADEMY PUBLISHER

