

A PSO-based Genetic Algorithm for Scheduling
of Tasks in a Heterogeneous Distributed System

Yan Kang

Department of Software Engineering, School of Software, Yunnan University, Kunming, Yunnan, China
Email: yankang@ynu.edu.cn

He Lu and Jing He

Department of Software Engineering, School of Software, Yunnan University, Kunming, Yunnan, China
Email: hejing@ynu.edu.cn

Abstract—The static task scheduling problem in distributed
systems is important because of optimal usage of available
machines and accepted computation time for scheduling
algorithm. A PSO-based hybrid algorithm is presented to
schedule the tasks represented by a Directed Acyclic Graph
(DAG) to a bounded number of heterogeneous processors
such that its schedule length is optimized. The algorithm
first generate feasible initial solutions by using some
effective list scheduling strategy and then evolve the solution
by using crossover and mutation operator. These operators
are modified to ensure the validity of the solutions. And a
PSO strategy is also used to improve the quality of the
solutions by using local and global information together.
The performance of the algorithm is demonstrated by
comparing the scheduling length ratio with the existing
effectively scheduling algorithms, Heterogeneous Earliest
Finish Time and Genetic Scheduling algorithm.

Index Terms—scheduling algorithm; heterogeneous;
heuristic; distributed system

I. INTRODUCTION

Huge Applications can cost-effectively utilize the
underlying parallelism on the available distributed
resources by partitioning the application into multiple
independent tasks. The problem is generally addressed in
terms of task scheduling, where tasks are the schedulable
units of an application, and resources are a network of
processors. The scheduling of a certain number of tasks
to the parallel processors is critical for achieving high
performance in distributed systems, especially for high
performance computing.

Task scheduling problem can be represented by a
Directed Acyclic Graph (DAG). Each node of a DAG
represents a task and a directed edge corresponds to the
precedence constraint between two tasks. The general
task scheduling problem includes the problem of
processing each task on suitable processor and the
problem of sequencing tasks so that precedent. The
problem of optimal scheduling of tasks have been shown
to be NP-complete in general [1,2], and optimal solutions
can be achieved only after an exhaustive search. A typical
performance indicator for efficient scheduling of a set of
tasks on the available processors is the make span, i.e.,

the time needed to complete all the jobs with task
precedence requirements being satisfied.

This problem has been extensively studied, and various
algorithms which are mainly for homogeneous processors
have been proposed in the literature. Heterogeneous
environment [3] is a diverse set of heterogeneous
processors interconnected with a high-speed network, and
then makes high speed processing of computationally
scientific and commercial applications like weather
prediction, image processing, high-definition television,
real-time and distributed database systems. Recently
many researches are focus on the specific context of
heterogeneous systems. Application scheduling is critical
for achieving high performance in heterogeneous
computing systems.

And then, many heuristics have been proposed for
giving a near optimization in polynomial time. These
heuristics are classified into a variety of categories such
as list scheduling algorithms [4-8], clustering algorithms
[9-11], Genetic algorithms [12-16] and task duplication
based algorithms [17-19].

In list scheduling algorithms [4-8], the task in a list is
constructed by assigning priority to it and each task is
assigned to the processor based on its priority. List
scheduling algorithms are generally preferred since they
have been shown to have a good cost-performance trade-
off between its cost and its performance. Several variant
list scheduling algorithms have been proposed to deal
with heterogeneous system, for example Mapping
Heuristic (MH) [4], Levelized-MinTime (LMT) [5],
Heterogeneous Earliest Finish Time (HEFT) [6]. The
HEFT algorithm significantly outperforms the MH and
LMT algorithm in terms of average schedule length ratio,
speedup, etc. Ref. [7] first uses the (HEFT) algorithm to
find an initial schedule and iteratively improves it. low
complexity A Performance Effective Task Scheduling
(PETS) algorithm [8] presents a low complexity
algorithm for heterogeneous computing systems.

Clustering algorithms [9-11] reduce the
communicating cost by scheduling heavily
communicating tasks onto the same processor instead
schedule them on other available processors. They try to
balance the parallelism and the inter-task communication
as three phase scheduling. Firstly, use linear or nonlinear

JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013 1443

© 2013 ACADEMY PUBLISHER
doi:10.4304/jsw.8.6.1443-1450

clustering heuristics to group tasks with large
communication cost into a set of clusters (unbounded)
and secondly, use communication sensitive or insensitive
heuristics to assign the clusters onto the set of available
processors. Thirdly do cluster merging or de-clustering
based on the available number of processors. Task
Duplication based scheduling Scheme (TDS) [10] and
Clustering for Heterogeneous Processors (CHP) [11] are
some well known clustering approach for solving task
scheduling algorithm.

Genetic algorithms have recently been applied to the
task scheduling problem and Job-shop scheduling
problem as robust stochastic search in algorithms [12-16].
This class of methods is based on the principles of natural
selection and natural genetics that combine the notion of
survival of the fittest, random and yet structured search,
and parallel evaluation of nodes in the search space. GA
has been used to directly evolve task assignment and
order in processors. GA is generally used in combination
with other list scheduling techniques and to evolve the
actual assignment and order of tasks into processors. Ref.
[12] uses a genetic approach to match and schedule the
tasks, Problem–Space Genetic Algorithm (PSGA) [13] is
proposed for heterogeneous processors and an
incremental genetic algorithm (GA) [14] for the
homogeneous processors. A GA is used to evolve
individuals consisting of multiple lists in [15]. A genetic
algorithm is present in [16] for solving Job-shop
Scheduling Problem (JSP). They are differ from each
other for different coding scheme, initial population
generation, chromosome selection and offspring
generation strategies.

In task duplication based algorithms [17-19], the
waiting time of the dependent tasks by duplicating the
tasks on more than one processor. Critical Path Fast
Duplication (CPFD) [17], Heterogeneous Critical Node
First (HCNF) [18] and Task duplication Algorithm for
Network of Heterogeneous system (TANH) [19] are a
few algorithms proposed in the literature for
heterogeneous system using task duplication.

This paper presents an efficient hybrid algorithm to
solve the task scheduling problem that the tasks
represented as a DAG are assigned onto heterogeneous
processors. Although there a few PSO algorithms in the
literature for flexible job-shop scheduling problems
(FJSP), we present a genetic scheduling algorithm which
is incorporated into PSO strategy. The objective of our
algorithm is to find a schedule that minimizes the
maximum completion time of all tasks. The genetic
algorithm first uses some list scheduling strategies to
generate feasible initial solution to lessen useless search.
Crossover operator used in this paper can guarantee the
valid of the new population. A new mutation operator is
presented to maintain population diversity and overcome
premature convergence. PSO strategy is used to improve
the search efficiency by combining local search (by self
experience) and global search (by social experience). A
new PSO operator effectively reduces the makespan of
the schedule by using the local minimum execution time
and global minimum one as heuristic strategy. Our

hybrid algorithm has been shown to be a valid and
effective approach for task scheduling algorithm on
heterogeneous distributed system.

This paper is organized as follows: The next section
briefly describe the scheduling problem, and give the
solution representation and fitness function. The detailed
operators are given in Section 3. In Section 4 we study
the performance of the algorithm for heterogeneous
systems. Section 5 concludes the paper.

II. TASK SCHEDULING PROBLEM

 A. Task scheduling Problem
A scheduling model G =(T,P,C,E) consists of a set of

tasks of an application, a target computing system and an
evaluating rule. G can be stated as follows:
 T={ ti, 1≤i≤n}is a set of n tasks,
P={ pj, 1≤j≤m }is a set of m independent different
types of processors,
E={ ei,j, 1≤i≤n, 1≤j≤m} is a matrix of computation
times. ei,j is the computation time of task ti on processor
pj , may be different on different processor depending on
the processors computational capability.
C={ ci,j, 1≤i≤n, 1≤j≤m} is a matrix of communication
times. The communication cost of edge ei,j which is for
transferring data from task ti (scheduled on processor pm)
to task tj (scheduled on processor pn) is as in the equation
(1).

⎩
⎨
⎧ ≠

=
.,0

;, tofr predecesso a is t,/ ji,,
, else

nmifrd
c nmji

ji

(1)

where di,j is the amount of data required to be transmitted
from task ti to task tj, and rm,n is the link communication
speed between two processors pm and processor pn. In this
study, the channel initialization time is assumed to be
negligible. Otherwise, di,k = 0 when both the tasks ti and tj
are assigned on the same processor. Further, for
illustration, the data transfer rate for each link is assumed
to be 1.0 and thus communication cost and amount of
data to be transferred will be the same.

In a given task graph, a task without any parent is
called an entry task and a task without any child is called
exit task. Without loss of generality, it is assumed that
there is one entry task to the DAG and one exit task from
the DAG. If there are more than one exit (entry) task,
they are connected to a pseudo-exit (pseudo-entry) task
with zero computation time and communication time.

Hypotheses considered in this paper are the following:
 Setting up times of processors are negligible,
 A limited number of fully connected heterogeneous

processors are independent from each other,
 Processors are continuously available and can only

execute one task at a given time without interruption.
 There are precedence constraints among the tasks, and

then the task cannot be scheduled until its predecessor
tasks have been completed.

 Each task requires exactly one processor without
interruption.

1444 JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013

© 2013 ACADEMY PUBLISHER

A set of processor assignments and execution times for
the each task of an application is called a schedule. Given
a schedule, the processor onto which a task ti is assigned
is denoted as P(ti), and the start time and finish time of
the task ti on the processor P(ti) is referred to by S(ti) and
F(ti) respectively. A schedule is obtained by generating a
set of tasks assignments and execution sequences.

 B. Solution Representation
In this paper, each solution for the problem is a vector

of length 2n where n is the number of tasks to be
scheduled. Each vector is a schedule S={R,A}, where
R={ri, 1≤i≤n,} is the execution order of the tasks to be
scheduled and A={ai, 1≤i≤n,} is the assignment of tasks
onto the processors. The cells on a solution S determine
which tasks are assigned to which processors. The order
in which the cells appear on R determines the order in
which the tasks will be performed on each processor.
Individuals are read from left to right to determine the
ordering of tasks on each processor.

Table I illustrates the schedule for assigning a task
graph with seven tasks to two processors according to a
schedule S={{1,2,6,3,5,4,7}, {1,2,2,1,2,2,1}}.

 C. Fitness Function
The fitness function will be used the following genetic

algorithm is the objective function of the task scheduling
problem. It can use the throughput, finishing time and
processor utilization for evaluating the quality of the
solution. The fitness function used for our algorithm is to
schedule the tasks of an application to heterogeneous
processors such that the makespan of the tasks is
minimized. Since reproduction operator of the genetic
operators will try to maximize the fitness function, the
fitness value of a schedule, S, is defined as Eq. (2)

)()max(max)(SmakespanctSf i
ti

i −+= ∑
∈

 (2)

where maxti is the maximum execution time of the task i,
and maxci is the average communication time of the task i.

III. PSO-BASED GENETIC SCHEDULING ALGORITHM

Genetic algorithms are of the most widely studied
guided random search techniques for the task scheduling
problem. A simple example is provided in Fig. 1 to
illustrate the operation of our generate operator. If the
number of individuals breaking the precedence
restrictions is relatively small, then it may be acceptable
to allow the operator to generate infeasible individuals
and discard them later. If the number of infeasible
individuals is comparable to those feasible individuals,
however, then too much computational time will be
wasted in generating the infeasible individuals and
checking them. In this paper, modified operators

presented are guaranteed to be feasible by using some
heuristic strategy. And a PSO strategy is presented by
mapping the particle of PSO to the scheduled task. The
detailed operator is described as follows.

 A. Popolation Initialization
In the standard GA, initial population is often

generated randomly. But we need to design the initial
individual carefully as the individual representation space
and the search space is not in one-to-one correspondence.
In this paper, a new genetic operator will be presented to
a feasible initial solution.

Since the randomly generated R in schedule S cannot
maintain the precedence constraints among the tasks, we
effectively use list scheduling strategies to generate
feasible solutions instead directly applying local search
strategy to position information. Our initiate operator can
generate valid initial population effectively as list
scheduling strategy is good at finding near optimum in
low cost.

The initiate operator can be described as:
1) A set of random execution times RE={rei, 1≤i≤

n,}which is lessen than the maximum execution time
of all tasks is given to a set of tasks, rei is thought as
the average execution time of the task i in the
heterogeneous processors.

2) The priority pi of the task ti is calculated as Eq. (3):
}{max

)(ijtisuccji repp +=
∈

 (3)

where succ(ti) is the set of immediate successor tasks
of task i. The priorities of the tasks are calculated
from the exit task to entry task based on the longest
path to an exit node on the DAG.

3) The permutation of R is generated by sorting the
tasks based on priority value.

Different combinations of priority values can be
generate by giving random execution time to each task.
Our generate operator can guarantee the validity of the
schedules by using basic list scheduling techniques.

Fig.1. shows a DAG with seven tasks and eight edges
which is labeled by the communication time. A simple
example is provided in Fig. 1 to illustrate the operation of
our generate operator.

1

4

6

3

5

7

3

1

1

2

2

21

1 1

Figure 1. A sample task graph with 7 tasks

TABLE I
A SAMPLE SCHEDULE

P1 t1 t3 T7

P2 t2 t6 t5 t4

JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013 1445

© 2013 ACADEMY PUBLISHER

In the instance (n=7), priority information is P=[19,
12,14,16,10,12,7] based on the random average execution
times of all task as {3,2,2,4,3,5,7}. p1=7 is the priority of
the task 7 as task7 is assigned a random value 7. A task
order R={1,4,3,2,6,5,7} is obtained by using our generate
operator, and task 1 is assigned firstly as p1=12 is the
priority of the task 1. If one task’s priority is equal to
another, the lower order number of task has priority.

Assume there are two processors available in the
heterogeneous computing system, a random individual is
obtained by combing R={1,4,3,2,6,5,7} with
A={1,2,2,1,1,2,2}. Table II illustrates the schedule
obtained by our generated operator.

The assignment permutation of S is generated by

assigning the random numbers which are less than the m,
the number of the processors, to each element in the A.
According to the schedule generated by the above
strategy, we use an ES strategy to schedule the task ti in R
onto processor pm in A in the same order. The start time
and end time of task ti , S(ti) and P(ti), are generated as its
earliest start time and its earliest finish time on the
processor pj, ES (ti,j) and EF (ti,j). ES (t0,j) = 0 for the entry
task t0, and ES (ti,m) for the other tasks are computed
recursively, starting from the entry task, as shown in Eq.
(4).

)}(),,(,max{),(
m

pAvnktESikcmitES += (4)

where Av(pm) is the earliest time that processor pk
completed the execution of the last assigned task, or the
idle period between the assigned tasks that is enough to
execute the task i. EF(ti,m)for the other tasks are
computed as shown in Eq. (5).

),(),(mitESiwmitEF += (5)

where wi is the random execution time of the task ti, the
task tk is the immediate predecessor tasks of task ti and
Av (pm) is the earliest finish time of the task assigned on
the processor pm, or the earliest idle period between the
already assigned tasks which is enough to complete the
task ti without avoiding the precedence restraints.

The ES schedule procedure is to assign the task in R
from left to right onto the processor in A according to its
earliest start time. The execution time of all tasks in Fig 1.
is given in Table III.

Based on Table II and Table III, the start time and

finish time of all the tasks obtained by the ES strategy is

showed in Table IV. The makespan of the schedule
showed in Table IV is 26.

B. Crossover Operator
We use a crossover operator to evolve individuals

consisting of multiple schedules, with first permutation in
the schedule representing each task’s priority and second
permutation representing its assigned processor. We use
random one-point crossover which randomly chosen a
crossover point for the two parent individuals to generate
the offspring.

For completing the unassigned positions on the
operation sequence of the offspring, check all the
operations of second parent from left to right. If
corresponding operation is already assigned in the
substring from first parent, skip to the next operation in
operation sequence of second parent. Otherwise, place
corresponding operation of the second parent for the
position in offspring. The operations taken from second
parent are the ones that proto-child needs.
1) Select a random point which is less than n, the

number of the tasks, and cut the R into two halves,
2) Maintain the left half of the elements in the first

individual R1,
3) Check R2 from left to right. If the element is assigned

in the let half of R1, skip to the next element in R2.
Otherwise, place corresponding element of R2 in R1,.

4) Obtain A1 by maintaining the original mapping
between the R1 and A1,

5) Obtain R2, A2 according to the steps 2), 3), 4).
Give the parent{{1,2,4,3,6,5,7},{1,2,3,1,2,2,1}}, and

{{1,3,2,4,5,6,7},{1,1,2,2,1,1,2}}, child {{1,2,4,3,6,5,7},
{1,2,3,1,2,2,1}} and child {{1,3,2,4,6,5,7},
{1,1,2,3,1,2,2}} can be generated according to the
random crossover is 3. The bold numbers in child show
the elements generated by the crossover operator.

It is noted that a feasible solution is generated
according the crossover operator since the precedence
constraints are maintaining.

C. Mutation Operator
Mutation can be thought as an effectively escape

method for premature convergence by randomly change
the value of an individual. For maintaining the feasibility
of the new generated individual, mutation operators here
generate new individuals in the following two methods.
1) Mutation operator changes the assigned processor of

the task within a single individual to another
processor based on the mutation probability. In this
way, an offspring with different assignment will be
generated.

TABLE II
SCHEDULE OF FIG. 1

P1 t1 t2 t6

P2 t4 t3 t5 t7

TABLE III
EXECUTION TIME OF FIG 1.

V 1 2 3 4 5 6 7

P1 2 8 5 4 8 4 7

P2 6 7 3 6 6 3 5

TABLE IV
SCHEDULE OF FIG1. BY ES STRATEGY

V t1 t4 t3 t2 t6 t5 t7

P1 0-2 2-10 14-18

P2 3-10 10-13 13-16 21-26

1446 JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013

© 2013 ACADEMY PUBLISHER

2) Mutation operator randomly changes the execution
time of a task based on the mutation probability, and
generate a permuted priority value by using the Eq.
(3). Therefore the tasks will be scheduled in different
order. In this way, an offspring with different
scheduled order will be generated.

The mutation probability should be small to avoiding
the large fluctuating of the quality of the population.

D. PSO Operator
The above operators which ensure the feasibility of

individuals maybe restricts the actions of genetic
operators. As a result, some parts of the search space
maybe unreachable. To guarantee an evolved population
with certain quality, a PSO operator based on Particle
swarm optimization (PSO) [20] is presented in this paper.
PSO is an optimization technique stimulating social
behavior of the flying birds and their methods of
information exchange. PSO algorithm improves the
search efficiency by using the evolutionary computation
which combining local best solution (local search) and
global best solution (global search) together. PSO has
been presented as an optimization technique in job shop
problem [21]. In this paper, we use the PSO strategy to
solve the task scheduling problem.

In PSO, each individual in the initial solutions called a
flying particle whose velocity is dynamically changed
according to the flying records of its local and its
neighbors global. During the past few years, several
models of PSO algorithm have been explored by
researchers [22]. Normally the velocity is computed as:

),(22),(11,1, , jixGBrcjixLBrcjiwvjiv jji −+−+=+ (6)

where c1 and c2 are constants called acceleration
coefficients, w is called the inertia factor, r1 and r2 are
two independent random numbers uniformly distributed
in the range of [0, 1]. LBi,j is the local best position for
particle i in the jth iteration, GBj is the global best
position for all particles in the jth iteration.

Thus, the position of each particle is updated in each
generation according to the following equation:

djvxx jijiji ,,2,1,1,,1, =+= ++ (7)
The most difficult part in applying PSO successfully to

our problem is to effectively map problem and generate
solution. For finding good solutions for the task
scheduling problem in acceptable time, we find a suitable
coding between task scheduling problem solution and
PSO particle. We sequence all the tasks of an application
according to the position of the tasks order of processing
time. The particle position can be generated stochastically
according to the order of execution time of tasks on
different processors. A particle position is corresponding
to the assignment of the task. By generating the priority
for each task, we convert the continuous position of
particles to a permutation of tasks, R which is the first
part of the schedule S. We compute the velocity of each
task as the following model equations:

),(22),(11,1, , jitGBrcjitLBrcjiwvjiv jji −+−+=+
 (8)

The velocity of the task i in the j+1th iteration is
calculated by using its local best execution time and its

global best execution time in the jth iteration. The
average execution time of the task i in the j+1th iteration
is calculated as follows:

djvtt jijiji ,,2,1,1,,1, =+= ++ (9)
According to the Eq. (2), the priority of each task is

generated by using the new average execution time. Then
the tasks will be move toward a new position in
permutation, R, and a schedule will be obtained by
combing R and a random permutation A.

Generally, the value of each component in ti by Eq. (8)
can be clamped to the range [− tmax, tmax] to control
excessive roaming of particles outside the search space,
where tmax is the maximum execution time of all tasks.
This process is repeated until a user-defined stopping
criterion is reached.

E. Reproduction
Reproduction is a commonly used genetic operator. The

reproduction process selects individuals from the current
population to form the next population of individuals based
on their fitness value. We generate the next generation of
population by combining three groups of individuals
together instead of just selecting individuals with better
fitness value with a higher probability.
1) The first group of pNum×A% individuals is generated

by using crossover operator,.
2) the second group of pNum × B% individuals is

generated by doing PSO operator, they all selected
individuals based on the roulette wheel.

3) The third group of pNum×C% individuals is generated
by passing the individuals with best fitness value in the
current generation to the next generation.

A,B,C are random numbers uniformly distributed in
interval [0, 1], and their sum is equal to 1 . pNum is the
number of initial population. These modifications will
increase the performance of the genetic algorithm.

F. Algorithm Description
The process of implementing the PGA algorithm is as

follows:
1) Initialize feasible population in the problem space

according to our generate operator.
2) For each individual, schedule the tasks onto the

processors and evaluate the desired optimization
fitness function.

3) Crossover each individual and generate feasible new
individual.

4) For each individual, schedule the tasks onto the
processors.

5) Evaluate the desired optimization fitness function,
and select pNum × A% individuals based on the
roulette wheel.

6) Mutate the individual with a small probability.
7) Compare the execution time of each task with its LB. If

current value is better than LB, then set LB value equal
to the current value, and the LB position equal to the
current position in problem space.

8) Compare the execution times of each task with its best
execution time obtained so far. If current value is better
than GB, then reset GB to the current execution time of
the task.

JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013 1447

© 2013 ACADEMY PUBLISHER

9) Generate feasible new individual by using PSO operator.
10) Evaluate the desired optimization fitness function,

and select pNum×B% individuals based on the roulette
wheel.

11) Select pNum×C% individuals with best fit fitness.
12) Loop to step 2) until the fitness value cannot be

improved or a specified number of generations is
exceeded.

IV. PERFORMANCE ANALYSES AND DISCUSSION

We have used Intel Xeon processors with 1 GHz speed
for randomly generated application graphs. The
comparisons of the algorithms are based on the following
objectives:
1) L(A), the makespan of the schedule A.
2) The improvement ratio (IR(A,B)), which is the ratio

of the makespans difference between two schedules
to the makespan of the first schedule.

)(/))()((),(ALBLALBAIR −= (10)
Random DAGs with various characteristics will be

generated according to the following parameters.
1) Number of tasks in the graph is a random number

between 6 and 80.
2) The ratio of the depth to the width of the graph

(DWR) can determine different shape of the graph. A
dense graph is a short graph with high parallelism,
while a sparse dense graph is a longer graph with a
low parallelism. The value is a uniform distribution
with range [0.8, 3].

3) The number of each task’s successors is ranging
from 1 to 4.

4) The ratio of the average communication time to the
average execution time (CER). It can be thought as a
computation-heavily application or communication-
heavily application based on the ratio value that is
between 0.1 and 2.

5) The range of execution time of each task (EC) , is a
real random number in the range [0.5, 2]. It implies
the range of the execution time in heterogeneous
processors.

The genetic algorithm used the following parameters
throughout the simulations:

population size = 50
crossover probability = 0.8
mutation probability = 0.04
maximum number of iterations = 500.
Tables V compare the near optimal schedule obtained

by our PSA algorithm, and genetic algorithm [14] on
random task graphs with no known optimal solutions.
Tables V compare the near optimal schedule obtained by
our PSA algorithm, and the list scheduling algorithm,
HEFT [6] on random task graphs with no known optimal
solutions.

HEFT algorithm selects the task with the so-called
highest upward rank value at each step and assigns the
selected task to the processor which minimizes its earliest
finish time with an insert-based policy. The best obtained
makespan by PGA and GA algorithm is presented in
Table V. And he best obtained makespan by PGA and
HEFT algorithm is presented in Table VI.

TABLE V
COMPARISON OF PGA AND GA ON RANDOM DAGS

Nodes DWR CER L(GA) L(PGA) IR(GA,PGA)%

Group 1: EC=0.8

7 0.9 0.2 28 27 3.57

17 1.2 1.8 45 44 2.22

23 0.8 0.9 61 58 4.92

36 0.9 1.7 80 75 6.25

41 1.4 1.1 118 113 4.24

59 2.8 0.7 179 174 2.79

63 2.1 1.3 246 239 2.85

75 1.8 0.4 321 308 4.05

Group 1: EC=1.8

7 0.9 0.2 28 27 3.57

17 1.2 1.8 45 41 8.89

23 1.8 0.9 61 56 8.2

36 0.9 0.7 80 75 6.25

41 1.4 1.1 118 112 5.08

59 2.8 0.7 179 172 3.91

63 2.1 1.3 246 236 4.07

75 1.8 0.4 321 302 5.92

TABLE VI
COMPARISON OF PGA AND HEFT ON RANDOM DAGS

Nodes DWR CER L(GA) L(PGA) IR(GA,PGA)%

Group 1: Ec=0.8

7 0.9 0.2 29 27 6.9

17 1.2 1.8 47 43 8.51

23 0.8 0.9 62 58 6.45

36 0.9 1.7 81 75 7.41

41 1.4 1.1 123 113 8.13

59 2.8 0.7 187 174 6.95

63 2.1 1.3 265 239 9.81

75 1.8 0.4 334 308 7.78

Group 1: Ec=1.8

7 0.9 0.2 29 27 6.9

17 1.2 1.8 47 41 12.8

23 1.8 0.9 62 56 9.68

36 0.9 0.7 81 71 12.3

41 1.4 1.1 123 112 8.94

59 2.8 0.7 187 172 8.02

63 2.1 1.3 265 236 10.9

75 1.8 0.4 334 302 9.58

1448 JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013

© 2013 ACADEMY PUBLISHER

 The benchmarks, varying independently in DWR, CER,
and EC, allow PGA and GA to be fairly evaluated by a
test bench that does not take advantage of any special
generating strategy.

For Tables V, the solution obtained by the PGA
algorithm is better than the GA algorithm and is within
9% of the optimal schedule. For Tables VI, the solution
obtained by the PGA algorithm is better than the HEFT
algorithm and is within 13% of the optimal schedule with
substantial improvements of at least 5%. As EC increased,
the relative performance of the PGA algorithm increased
as the improved performance of PGA is due to the
heterogeneous. It is conceivable that as CER, and
consequently the communication cost increases, the
effects of PGA’s become obvious relative to HEFT. It is
similarly expected that as DWR increases the parallelism
of the DAG will improving the performance of PGA.

V. CONCLUSION

In this paper, the problem of task scheduling is stated
as minimizing the schedule length for the tasks scheduled
on heterogeneous processors. A hybrid algorithm(PGA)
is proposed by combining the PSO strategy and modified
genetic operators together. Genetic algorithm is a well-
studied heuristic for the task scheduling problem
dedicated to minimize makespan of the schedule. A fairly
expressive solution representation and the incorporation
of smart heuristics, resulted in increased complexity. A
generate operator is presented in this paper to generate
feasible initial population by effectively using list
scheduling strategy. And modified crossover and
mutation operators facilitates the generation of the
offspring and guarantees the feasibility of the new
population. PSO strategy is incorporated to guiding the
search more effectively based on local and global
information together. A mapping mechanism is presented
between the particle of swarm and the scheduled task and
is used in the order of tasks to be scheduled without
interference to the assignment of tasks.

For DAGs randomly generated under various
parameters, PGA algorithm is experimentally shown to
outperform a leading genetic algorithm and a leading list
scheduling algorithm.

ACKNOWLEDGMENT

This work was supported in part by a grant from the
Open Foundation of Key Laboratory in Software
Engineering of Yunnan Province under Grant NO.
2011SE03, National Natural Science Foundation of China
(Grant No. 60763008), and “CDIO-based software system
modeling and design research and implementation” (Grant
No. Rj14).

REFERENCES
[1] Graham, R.L., L.E. Lawler, J.K. Lenstra and A.H. Kan,

“Optimization and approximation in deterministic
sequencing and scheduling: A survey.” Ann. Discrete
Math., pp. 287-326, 1979.

[2] Cassavant. T. and J.A. Kuhl, “Taxonomy of scheduling in
general purpose distributed memory systems.” IEEE Trans.
Software Engg., vol. 14, pp. 141-154, 1988.

[3] Hui, C.C. and S.T. Chanson, “Allocating task interaction
graphs to processors in heterogeneous networks.” IEEE
Trans. Parallel and Distributed Systems, vol. 8, pp. 908-
926, 1997.

[4] EI-Rewini, H. and T.G. Lewis, “Scheduling parallel
program tasks onto arbitrary target machines.” J. Parallel
and Distributed Computing, vol. 9, pp. 138-153, 1990.

[5] Iverson, M., F. Ozguner and G. Follen, “Parallelizing
existing applications in a distributed heterogeneous
environments.” Proc. Heterogeneous Computing
Workshop, pp: 93-100, 1995.

[6] Topcuoglu, H., S. Hariri and M.Y. Wu, “Performance
effective and low-complexity task scheduling for
heterogeneous computing.” IEEE Trans. on Parallel and
Distributed Systems, vol. 13(3), 2002.

[7] Liu G. Q., Poh K. L., and Xie M., “Iterative list scheduling
for heterogeneous computing.” J. Parallel and Distributed
Computing, vol. 65, pp. 654-665, 2005.

[8] Ilavarasan E. and Thambidurai P., “Low complexity
performance effective task scheduling algorithm for
heterogeneous computing environments”, J. Computer
Sciences, vol. 3(3) , pp. 94-103, 2007.

[9] Kafil, M. and I. Ahmed, “Optimal task assignment in
heterogeneous distributed computing systems.” IEEE
Concurrency,vol. 6, pp. 42-51, 1998.

[10] Ranaweera, A. and D.P. Agrawal, “A task duplication
based algorithm for heterogeneous systems.” Proc. IPDPS,
pp. 445-450, 2000.

[11] Cristina Boeres, Jos´e Viterbo Filho and Vinod E. F.
Rebello, “A cluster-based strategy for scheduling task on
heterogeneous processors.” Proc. 16th Symp. on Computer
Architecture and High Performance Computing (SBAC-
PAD), 2004.

[12] Wang, L., H.J. Siegel, V.P. Rowchoudhry and A.A.
Maciejewski, “Task matching and scheduling in
heterogeneous computing environments using a genetic
algorithm-based approach.” J. Parallel and Distributed
Computing, vol. 47, pp. 8-22, 1997.

[13] Dhodhi, M.K., I. Ahmad, A. Yatama, “An integrated
technique for task matching and scheduling onto
distributed heterogeneous computing systems.” J. Parallel
and Distributed Computing, vol. 62, pp. 1338-1361, 2002.

[14] Annie, S.W., H. Yu, S. Jin, K.-C. Lin, “An incremental
genetic algorithm approach to multiprocessor scheduling.”
IEEE Trans. on Parallel and Distributed Systems, vol. 15,
pp. 824-834. 2004.

[15] Hou E.S., Ansari N., and Ren H., “A Genetic Algorithm
for Multiprocessor Scheduling,” IEEE Trans. Parallel and
Distributed Systems, vol. 5(2), pp. 113-120, 1994.

[16] Ye Li, Yan Chen, “A Genetic Algorithm for Job-Shop
Scheduling.” Journal of software, vol. 5(3) pp. 269-274,
2010.

[17] Braun, T.D., H.J. Siegel, N. Beck and L.L. Boloni et al.,
“A comparison study of static mapping heuristics for a
class of meta-tasks on heterogeneous computing systems.”
Proc. 8th Workshop on Heterogeneous Processing, pp. 15-
29, 1999.

[18] Ahmed, I. and Y. Kwok, “On exploiting task duplication in
parallel program scheduling. IEEE Trans. on Parallel and
Distributed Systems,” vol. 9, pp. 872- 892, 1998.

[19] Basker, S. and SaiRanga, P.C. “Scheduling directed a-
cyclic task graphs on heterogeneous network of
workstations to minimize schedule length. “Proc. ICPPW,
2003.

[20] Kennedy J, Eberhart RC, and ShiY. Swarm intelligence.
San Francisco: Morgan Kaufmann Publishers; 2001.

[21] Weijun X., and Zhiming W., “An effective hybrid
optimization approach for multi-objective flexible job-shop
scheduling problems”, vol. 48, PP. 409-425, 2005

JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013 1449

© 2013 ACADEMY PUBLISHER

[22] Bou L., Ling W., and Yi-Hui J., “ An effective hybrid
PSO-based algorithm for flow shop scheduling with
limited buffers”, vol. 35, PP. 2791-2806, 2008

Yan Kang, Sichuan province, 1972.6.
She received the BS degree and MS
degree from Yunnan University, Yunnan
and PhD from Institute of Software,
Chinese Academy of Sciences, Beijing.
She is the associate professor of Software
Engineering Department, Yunnan
University. She has more than 15 years
of experience in the field of heuristic
strategy and algorithm design. She is

currently working on scheduling problem, and data mining.

1450 JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013

© 2013 ACADEMY PUBLISHER

