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Abstract—The static task scheduling problem in distributed 
systems is important because of optimal usage of available 
machines and accepted computation time for scheduling 
algorithm. A PSO-based hybrid algorithm is presented to 
schedule the tasks represented by a Directed Acyclic Graph 
(DAG) to a bounded number of heterogeneous processors 
such that its schedule length is optimized. The algorithm 
first generate feasible initial solutions by using some 
effective list scheduling strategy and then evolve the solution 
by using crossover and mutation operator. These operators 
are modified to ensure the validity of the solutions. And a 
PSO strategy is also used to improve the quality of the 
solutions by using local and global information together. 
The performance of the algorithm is demonstrated by 
comparing the scheduling length ratio with the existing 
effectively scheduling algorithms, Heterogeneous Earliest 
Finish Time and Genetic Scheduling algorithm.  
 
Index Terms—scheduling algorithm; heterogeneous; 
heuristic; distributed system 
 

I.  INTRODUCTION 

Huge Applications can cost-effectively utilize the 
underlying parallelism on the available distributed 
resources by partitioning the application into multiple 
independent tasks. The problem is generally addressed in 
terms of task scheduling, where tasks are the schedulable 
units of an application, and resources are a network of 
processors. The scheduling of a certain number of tasks 
to the parallel processors is critical for achieving high 
performance in distributed systems, especially for high 
performance computing.  

Task scheduling problem can be represented by a 
Directed Acyclic Graph (DAG). Each node of a DAG 
represents a task and a directed edge corresponds to the 
precedence constraint between two tasks. The general 
task scheduling problem includes the problem of 
processing each task on suitable processor and the 
problem of sequencing tasks so that precedent. The 
problem of optimal scheduling of tasks have been shown 
to be NP-complete in general [1,2], and optimal solutions 
can be achieved only after an exhaustive search. A typical 
performance indicator for efficient scheduling of a set of 
tasks on the available processors is the make span, i.e., 

the time needed to complete all the jobs with task 
precedence requirements being satisfied.  

This problem has been extensively studied, and various 
algorithms which are mainly for homogeneous processors 
have been proposed in the literature. Heterogeneous 
environment [3] is a diverse set of heterogeneous 
processors interconnected with a high-speed network, and 
then makes high speed processing of computationally 
scientific and commercial applications like weather 
prediction, image processing, high-definition television, 
real-time and distributed database systems. Recently 
many researches are focus on the specific context of 
heterogeneous systems. Application scheduling is critical 
for achieving high performance in heterogeneous 
computing systems. 

And then, many heuristics have been proposed for 
giving a near optimization in polynomial time. These 
heuristics are classified into a variety of categories such 
as list scheduling algorithms [4-8], clustering algorithms 
[9-11], Genetic algorithms [12-16] and task duplication 
based algorithms [17-19].  

In list scheduling algorithms [4-8], the task in a list is 
constructed by assigning priority to it and each task is 
assigned to the processor based on its priority. List 
scheduling algorithms are generally preferred since they 
have been shown to have a good cost-performance trade-
off between its cost and its performance. Several variant 
list scheduling algorithms have been proposed to deal 
with heterogeneous system, for example Mapping 
Heuristic (MH) [4], Levelized-MinTime (LMT) [5], 
Heterogeneous Earliest Finish Time (HEFT) [6]. The 
HEFT algorithm significantly outperforms the MH and 
LMT algorithm in terms of average schedule length ratio, 
speedup, etc. Ref. [7] first uses the (HEFT) algorithm to 
find an initial schedule and iteratively improves it. low 
complexity A Performance Effective Task Scheduling 
(PETS) algorithm [8] presents a low complexity 
algorithm for heterogeneous computing systems. 

Clustering algorithms [9-11] reduce the 
communicating cost by scheduling heavily 
communicating tasks onto the same processor instead 
schedule them on other available processors. They try to 
balance the parallelism and the inter-task communication 
as three phase scheduling. Firstly, use linear or nonlinear 
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clustering heuristics to group tasks with large 
communication cost into a set of clusters (unbounded) 
and secondly, use communication sensitive or insensitive 
heuristics to assign the clusters onto the set of available 
processors. Thirdly do cluster merging or de-clustering 
based on the available number of processors. Task 
Duplication based scheduling Scheme (TDS) [10] and 
Clustering for Heterogeneous Processors (CHP) [11] are 
some well known clustering approach for solving task 
scheduling algorithm.  

Genetic algorithms have recently been applied to the 
task scheduling problem and Job-shop scheduling 
problem as robust stochastic search in algorithms [12-16]. 
This class of methods is based on the principles of natural 
selection and natural genetics that combine the notion of 
survival of the fittest, random and yet structured search, 
and parallel evaluation of nodes in the search space. GA 
has been used to directly evolve task assignment and 
order in processors. GA is generally used in combination 
with other list scheduling techniques and to evolve the 
actual assignment and order of tasks into processors. Ref. 
[12] uses a genetic approach to match and schedule the 
tasks, Problem–Space Genetic Algorithm (PSGA) [13] is 
proposed for heterogeneous processors and an 
incremental genetic algorithm (GA) [14] for the 
homogeneous processors. A GA is used to evolve 
individuals consisting of multiple lists in [15]. A genetic 
algorithm is present in [16] for solving Job-shop 
Scheduling Problem (JSP). They are differ from each 
other for different coding scheme, initial population 
generation, chromosome selection and offspring 
generation strategies.  

In task duplication based algorithms [17-19], the 
waiting time of the dependent tasks by duplicating the 
tasks on more than one processor. Critical Path Fast 
Duplication (CPFD) [17], Heterogeneous Critical Node 
First (HCNF) [18] and Task duplication Algorithm for 
Network of Heterogeneous system (TANH) [19] are a 
few algorithms proposed in the literature for 
heterogeneous system using task duplication.  

This paper presents an efficient hybrid algorithm to 
solve the task scheduling problem that the tasks 
represented as a DAG are assigned onto heterogeneous 
processors. Although there a few PSO algorithms in the 
literature for flexible job-shop scheduling problems 
(FJSP), we present a genetic scheduling algorithm which 
is incorporated into PSO strategy. The objective of our 
algorithm is to find a schedule that minimizes the 
maximum completion time of all tasks. The genetic 
algorithm first uses some list scheduling strategies to 
generate feasible initial solution to lessen useless search. 
Crossover operator used in this paper can guarantee the 
valid of the new population. A new mutation operator is 
presented to maintain population diversity and overcome 
premature convergence. PSO strategy is used to improve 
the search efficiency by combining local search (by self 
experience) and global search (by social experience). A 
new PSO operator effectively reduces the makespan of 
the schedule by using the local minimum execution time 
and global minimum one as heuristic strategy.  Our 

hybrid algorithm has been shown to be a valid and 
effective approach for task scheduling algorithm on 
heterogeneous distributed system. 

This paper is organized as follows: The next section 
briefly describe the scheduling problem, and give the 
solution representation and fitness function. The detailed 
operators are given in Section 3. In Section 4 we study 
the performance of the algorithm for heterogeneous 
systems. Section 5 concludes the paper. 

II.  TASK SCHEDULING PROBLEM 

 A.  Task scheduling Problem  
A scheduling model G =(T,P,C,E) consists of a set of 

tasks of an application, a target computing system and an 
evaluating rule. G can be stated as follows: 
 T={ ti, 1≤i≤n}is a set of n tasks, 
P={ pj, 1≤j≤m }is a set of m independent different 
types of processors, 
E={ ei,j, 1≤i≤n, 1≤j≤m} is a matrix of computation 
times. ei,j  is the computation time of task ti on processor 
pj , may be different on different processor depending on 
the processors computational capability.  
C={ ci,j, 1≤i≤n, 1≤j≤m} is a matrix of communication 
times. The communication cost of edge ei,j which is for 
transferring data from task ti (scheduled on processor pm ) 
to task tj (scheduled on processor pn) is as in the equation 
(1). 

⎩
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where di,j is the amount of data required to be transmitted 
from task ti to task tj, and  rm,n is the link communication 
speed between two processors pm and processor pn. In this 
study, the channel initialization time is assumed to be 
negligible. Otherwise, di,k = 0 when both the tasks ti and tj 
are assigned on the same processor. Further, for 
illustration, the data transfer rate for each link is assumed 
to be 1.0 and thus communication cost and amount of 
data to be transferred will be the same.  

In a given task graph, a task without any parent is 
called an entry task and a task without any child is called 
exit task. Without loss of generality, it is assumed that 
there is one entry task to the DAG and one exit task from 
the DAG. If there are more than one exit (entry) task, 
they are connected to a pseudo-exit (pseudo-entry) task 
with zero computation time and communication time.  

Hypotheses considered in this paper are the following: 
 Setting up times of processors are negligible, 
 A limited number of fully connected heterogeneous 

processors are independent from each other, 
 Processors are continuously available and can only 

execute one task at a given time without interruption. 
 There are precedence constraints among the tasks, and 

then the task cannot be scheduled until its predecessor 
tasks have been completed. 

 Each task requires exactly one processor without 
interruption. 
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A set of processor assignments and execution times for 
the each task of an application is called a schedule. Given 
a schedule, the processor onto which a task ti is assigned 
is denoted as P(ti), and the start time and finish time of 
the task ti on the processor P(ti) is referred to by S(ti) and 
F(ti) respectively. A schedule is obtained by generating a 
set of tasks assignments and execution sequences. 

 B.  Solution Representation 
In this paper, each solution for the problem is a vector 

of length 2n where n is the number of tasks to be 
scheduled. Each vector is a schedule S={R,A}, where 
R={ri, 1≤i≤n,} is the execution order of the tasks to be 
scheduled and A={ai, 1≤i≤n,} is the assignment of tasks 
onto the processors. The cells on a solution S determine 
which tasks are assigned to which processors. The order 
in which the cells appear on R determines the order in 
which the tasks will be performed on each processor. 
Individuals are read from left to right to determine the 
ordering of tasks on each processor. 

Table I illustrates the schedule for assigning a task 
graph with seven tasks to two processors according to a 
schedule S={{1,2,6,3,5,4,7}, {1,2,2,1,2,2,1}}. 

 C.  Fitness Function 
The fitness function will be used the following genetic 

algorithm is the objective function of the task scheduling 
problem. It can use the throughput, finishing time and 
processor utilization for evaluating the quality of the 
solution. The fitness function used for our algorithm is to 
schedule the tasks of an application to heterogeneous 
processors such that the makespan of the tasks is 
minimized. Since reproduction operator of the genetic 
operators will try to maximize the fitness function, the 
fitness value of a schedule, S, is defined as Eq. (2) 

)()max(max)( SmakespanctSf i
ti

i −+= ∑
∈

   (2) 

where maxti is the maximum execution time of the task i, 
and maxci is the average communication time of the task i. 

III.  PSO-BASED GENETIC SCHEDULING ALGORITHM 

Genetic algorithms are of the most widely studied 
guided random search techniques for the task scheduling 
problem. A simple example is provided in Fig. 1 to 
illustrate the operation of our generate operator. If the 
number of individuals breaking the precedence 
restrictions is relatively small, then it may be acceptable 
to allow the operator to generate infeasible individuals 
and discard them later. If the number of infeasible 
individuals is comparable to those feasible individuals, 
however, then too much computational time will be 
wasted in generating the infeasible individuals and 
checking them. In this paper, modified operators 

presented are guaranteed to be feasible by using some 
heuristic strategy. And a PSO strategy is presented by 
mapping the particle of PSO to the scheduled task. The 
detailed operator is described as follows. 

 A.  Popolation Initialization 
In the standard GA, initial population is often 

generated randomly. But we need to design the initial 
individual carefully as the individual representation space 
and the search space is not in one-to-one correspondence. 
In this paper, a new genetic operator will be presented to 
a feasible initial solution. 

Since the randomly generated R in schedule S cannot 
maintain the precedence constraints among the tasks, we 
effectively use list scheduling strategies to generate 
feasible solutions instead directly applying local search 
strategy to position information. Our initiate operator can 
generate valid initial population effectively as list 
scheduling strategy is good at finding near optimum in 
low cost.  

The initiate operator can be described as:  
1) A set of random execution times RE={rei, 1≤i≤

n,}which is lessen than the maximum execution time 
of all tasks is given to a set of tasks, rei is thought as 
the average execution time of the task i in the 
heterogeneous processors.  

2) The priority pi of the task ti is calculated as Eq. (3):  
}{max

)( ijtisuccji repp +=
∈

   
                (3) 

where succ(ti) is the set of immediate successor tasks 
of task i. The priorities of the tasks are calculated 
from the exit task to entry task based on the longest 
path to an exit node on the DAG.  

3) The permutation of R is generated by sorting the 
tasks based on priority value.  

Different combinations of priority values can be 
generate by giving random execution time to each task. 
Our generate operator can guarantee the validity of the 
schedules by using basic list scheduling techniques. 

Fig.1. shows a DAG with seven tasks and eight edges 
which is labeled by the communication time. A simple 
example is provided in Fig. 1 to illustrate the operation of 
our generate operator.  
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Figure 1. A sample task graph with 7 tasks 

TABLE I  
A SAMPLE SCHEDULE 

P1 t1   t3         T7

P2  t2 t6  t5 t4  
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In the instance (n=7), priority information is P=[19, 
12,14,16,10,12,7] based on the random average execution 
times of all task as {3,2,2,4,3,5,7}. p1=7 is the priority of 
the task 7 as task7 is assigned a random value 7. A task 
order R={1,4,3,2,6,5,7} is obtained by using our generate 
operator, and task 1 is assigned firstly as p1=12 is the 
priority of the task 1. If one task’s priority is equal to 
another, the lower order number of task has priority. 

Assume there are two processors available in the 
heterogeneous computing system, a random individual is 
obtained by combing R={1,4,3,2,6,5,7} with 
A={1,2,2,1,1,2,2}. Table II illustrates the schedule 
obtained by our generated operator. 

The assignment permutation of S is generated by 

assigning the random numbers which are less than the m, 
the number of the processors, to each element in the A.  
According to the schedule generated by the above 
strategy, we use an ES strategy to schedule the task ti in R 
onto processor pm in A in the same order. The start time 
and end time of task ti , S(ti) and P(ti), are generated as its 
earliest start time and its earliest finish time on the 
processor pj, ES (ti,j) and EF (ti,j). ES (t0,j) = 0 for the entry 
task t0,  and ES (ti,m) for the other tasks are computed 
recursively, starting from the entry task, as shown in Eq. 
(4).  

   )}(),,(,max{),(
m

pAvnktESikcmitES +=         (4) 

where Av(pm) is the earliest time that processor pk 
completed the execution of the last assigned task,  or the 
idle period between the assigned tasks that is enough to 
execute the task i. EF(ti,m)for the other tasks are 
computed as shown in Eq. (5).  

   ),(),( mitESiwmitEF +=             (5) 

where wi is the random execution time of the task ti, the 
task tk is the immediate predecessor tasks of task ti  and 
Av (pm) is the earliest finish time of the task assigned on 
the processor pm, or the earliest idle period between the 
already assigned tasks which is enough to complete the 
task ti without avoiding the precedence restraints. 

The ES schedule procedure is to assign the task in R 
from left to right onto the processor in A according to its 
earliest start time. The execution time of all tasks in Fig 1. 
is given in Table III. 

Based on Table II and Table III, the start time and 

finish time of all the tasks obtained by the ES strategy is 

showed in Table IV. The makespan of the schedule 
showed in Table IV is 26. 

B. Crossover Operator 
We use a crossover operator to evolve individuals 

consisting of multiple schedules, with first permutation in 
the schedule representing each task’s priority and second 
permutation representing its assigned processor. We use 
random one-point crossover which randomly chosen a 
crossover point for the two parent individuals to generate 
the offspring.  

For completing the unassigned positions on the 
operation sequence of the offspring, check all the 
operations of second parent from left to right. If 
corresponding operation is already assigned in the 
substring from first parent, skip to the next operation in 
operation sequence of second parent. Otherwise, place 
corresponding operation of the second parent for the 
position in offspring. The operations taken from second 
parent are the ones that proto-child needs. 
1) Select a random point which is less than n, the 

number of the tasks, and cut the R into two halves, 
2) Maintain the left half of the elements in the first 

individual R1, 
3) Check R2 from left to right. If the element is assigned 

in the let half of R1, skip to the next element in R2. 
Otherwise, place corresponding element of R2 in R1,. 

4) Obtain A1 by maintaining the original mapping 
between the R1 and A1, 

5) Obtain R2, A2 according to the steps 2), 3), 4).  
Give the parent{{1,2,4,3,6,5,7},{1,2,3,1,2,2,1}}, and 

{{1,3,2,4,5,6,7},{1,1,2,2,1,1,2}}, child {{1,2,4,3,6,5,7}, 
{1,2,3,1,2,2,1}} and  child {{1,3,2,4,6,5,7}, 
{1,1,2,3,1,2,2}} can be generated according to the 
random crossover is 3. The bold numbers in child show 
the elements generated by the crossover operator.  

It is noted that a feasible solution is generated 
according the crossover operator since the precedence 
constraints are maintaining. 

C. Mutation Operator 
Mutation can be thought as an effectively escape 

method for premature convergence by randomly change 
the value of an individual. For maintaining the feasibility 
of the new generated individual, mutation operators here 
generate new individuals in the following two methods. 
1) Mutation operator changes the assigned processor of 

the task within a single individual to another 
processor based on the mutation probability. In this 
way, an offspring with different assignment will be 
generated.  

TABLE II 
SCHEDULE OF FIG. 1 

P1 t1   t2 t6         

P2  t4 t3   t5 t7 

TABLE III 
EXECUTION TIME OF FIG 1. 

V 1 2 3 4 5 6 7 

P1 2 8 5 4 8 4 7 

P2 6 7 3 6 6 3 5 

TABLE IV 
SCHEDULE OF FIG1. BY ES STRATEGY 

V t1 t4 t3 t2 t6 t5 t7 

P1 0-2   2-10 14-18   

P2  3-10 10-13   13-16 21-26
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2) Mutation operator randomly changes the execution 
time of a task based on the mutation probability, and 
generate a permuted priority value by using the Eq. 
(3). Therefore the tasks will be scheduled in different 
order. In this way, an offspring with different 
scheduled order will be generated.  

The mutation probability should be small to avoiding 
the large fluctuating of the quality of the population. 

D. PSO  Operator 
The above operators which ensure the feasibility of 

individuals maybe restricts the actions of genetic 
operators. As a result, some parts of the search space 
maybe unreachable. To guarantee an evolved population 
with certain quality, a PSO operator based on Particle 
swarm optimization (PSO) [20] is presented in this paper. 
PSO is an optimization technique stimulating social 
behavior of the flying birds and their methods of 
information exchange. PSO algorithm improves the 
search efficiency by using the evolutionary computation 
which combining local best solution (local search) and 
global best solution (global search) together. PSO has 
been presented as an optimization technique in job shop 
problem [21]. In this paper, we use the PSO strategy to 
solve the task scheduling problem. 

In PSO, each individual in the initial solutions called a 
flying particle whose velocity is dynamically changed 
according to the flying records of its local and its 
neighbors global. During the past few years, several 
models of PSO algorithm have been explored by 
researchers [22]. Normally the velocity is computed as: 

),(22),(11,1, , jixGBrcjixLBrcjiwvjiv jji −+−+=+    (6) 

where c1 and c2 are constants called acceleration 
coefficients, w is called the inertia factor, r1 and r2 are 
two independent random numbers uniformly distributed 
in the range of [0, 1]. LBi,j is the local best position for 
particle i in the jth iteration, GBj is the global best 
position for all particles in the jth iteration. 

Thus, the position of each particle is updated in each 
generation according to the following equation: 

djvxx jijiji ,,2,1,1,,1, =+= ++                (7) 
The most difficult part in applying PSO successfully to 

our problem is to effectively map problem and generate 
solution. For finding good solutions for the task 
scheduling problem in acceptable time, we find a suitable 
coding between task scheduling problem solution and 
PSO particle. We sequence all the tasks of an application 
according to the position of the tasks order of processing 
time. The particle position can be generated stochastically 
according to the order of execution time of tasks on 
different processors. A particle position is corresponding 
to the assignment of the task. By generating the priority 
for each task, we convert the continuous position of 
particles to a permutation of tasks, R which is the first 
part of the schedule S. We compute the velocity of each 
task as the following model equations: 

),(22),(11,1, , jitGBrcjitLBrcjiwvjiv jji −+−+=+
   (8) 

The velocity of the task i in the j+1th iteration is 
calculated by using its local best execution time and its 

global best execution time in the jth iteration. The 
average execution time of the task i in the j+1th iteration 
is calculated as follows: 

djvtt jijiji ,,2,1,1,,1, =+= ++                (9) 
According to the Eq. (2), the priority of each task is 

generated by using the new average execution time. Then 
the tasks will be move toward a new position in 
permutation, R, and a schedule will be obtained by 
combing R and a random permutation A.  

Generally, the value of each component in ti by Eq. (8) 
can be clamped to the range [− tmax, tmax] to control 
excessive roaming of particles outside the search space, 
where tmax is the maximum execution time of all tasks. 
This process is repeated until a user-defined stopping 
criterion is reached. 

E. Reproduction 
Reproduction is a commonly used genetic operator. The 

reproduction process selects individuals from the current 
population to form the next population of individuals based 
on their fitness value. We generate the next generation of 
population by combining three groups of individuals 
together instead of just selecting individuals with better 
fitness value with a higher probability.  
1) The first group of pNum×A% individuals is generated 

by using crossover operator,. 
2) the second group of pNum × B% individuals is 

generated by doing PSO operator, they all selected 
individuals based on the roulette wheel.  

3) The third group of pNum×C% individuals is generated 
by passing the individuals with best fitness value in the 
current generation to the next generation.  

A,B,C are random numbers uniformly distributed in 
interval [0, 1], and their sum is equal to 1 . pNum is the 
number of initial population. These modifications will 
increase the performance of the genetic algorithm. 

F. Algorithm Description 
The process of implementing the PGA algorithm is as 

follows: 
1) Initialize feasible population in the problem space 

according to our generate operator. 
2) For each individual, schedule the tasks onto the 

processors and evaluate the desired optimization 
fitness function. 

3) Crossover each individual and generate feasible new 
individual. 

4) For each individual, schedule the tasks onto the 
processors. 

5) Evaluate the desired optimization fitness function, 
and select pNum × A% individuals based on the 
roulette wheel. 

6) Mutate the individual with a small probability. 
7) Compare the execution time of each task with its LB. If 

current value is better than LB, then set LB value equal 
to the current value, and the LB position equal to the 
current position in problem space. 

8) Compare the execution times of each task with its best 
execution time obtained so far. If current value is better 
than GB, then reset GB to the current execution time of 
the task. 
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9) Generate feasible new individual by using PSO operator. 
10) Evaluate the desired optimization fitness function, 

and select pNum×B% individuals based on the roulette 
wheel. 

11) Select pNum×C% individuals with best fit fitness. 
12) Loop to step 2) until the fitness value cannot be 

improved or a specified number of generations is 
exceeded. 

IV.  PERFORMANCE ANALYSES AND DISCUSSION  

We have used Intel Xeon processors with 1 GHz speed 
for randomly generated application graphs. The 
comparisons of the algorithms are based on the following 
objectives: 
1) L(A), the makespan of the schedule A. 
2) The improvement ratio (IR(A,B)), which is the ratio 

of the makespans difference between two schedules 
to the makespan of the first schedule. 

)(/))()((),( ALBLALBAIR −=               (10) 
Random DAGs with various characteristics will be 

generated according to the following parameters. 
1) Number of tasks in the graph is a random number 

between 6 and 80. 
2) The ratio of the depth to the width of the graph 

(DWR) can determine different shape of the graph. A 
dense graph is a short graph with high parallelism, 
while a sparse dense graph is a longer graph with a 
low parallelism. The value is a uniform distribution 
with range [0.8, 3]. 

3) The number of each task’s successors is ranging 
from 1 to 4. 

4) The ratio of the average communication time to the 
average execution time (CER). It can be thought as a 
computation-heavily application or communication-
heavily application based on the ratio value that is 
between 0.1 and 2. 

5) The range of execution time of each task (EC) , is a 
real random number in the range [0.5, 2]. It implies 
the range of the execution time in heterogeneous 
processors. 

The genetic algorithm used the following parameters 
throughout the simulations: 

population size = 50 
crossover probability = 0.8 
mutation probability = 0.04 
maximum number of iterations = 500. 
Tables V compare the near optimal schedule obtained 

by our PSA algorithm, and genetic algorithm [14] on 
random task graphs with no known optimal solutions. 
Tables V compare the near optimal schedule obtained by 
our PSA algorithm, and the list scheduling algorithm, 
HEFT [6] on random task graphs with no known optimal 
solutions.  

HEFT algorithm selects the task with the so-called 
highest upward rank value at each step and assigns the 
selected task to the processor which minimizes its earliest 
finish time with an insert-based policy. The best obtained 
makespan by PGA and GA algorithm is presented in 
Table V. And he best obtained makespan by PGA and 
HEFT algorithm is presented in Table VI. 

TABLE V 
COMPARISON OF PGA AND GA ON RANDOM DAGS 

Nodes DWR CER L(GA) L(PGA) IR(GA,PGA)%

Group 1: EC=0.8 

7 0.9 0.2 28 27 3.57 

17 1.2 1.8 45 44 2.22 

23 0.8 0.9 61 58 4.92 

36 0.9 1.7 80 75 6.25 

41 1.4 1.1 118 113 4.24 

59 2.8 0.7 179 174 2.79 

63 2.1 1.3 246 239 2.85 

75 1.8 0.4 321 308 4.05 

Group 1: EC=1.8 

7 0.9 0.2 28 27 3.57 

17 1.2 1.8 45 41 8.89 

23 1.8 0.9 61 56 8.2 

36 0.9 0.7 80 75 6.25 

41 1.4 1.1 118 112 5.08 

59 2.8 0.7 179 172 3.91 

63 2.1 1.3 246 236 4.07 

75 1.8 0.4 321 302 5.92 

TABLE VI 
COMPARISON OF PGA AND HEFT ON RANDOM DAGS 

Nodes DWR CER L(GA) L(PGA) IR(GA,PGA)%

Group 1: Ec=0.8 

7 0.9 0.2 29 27 6.9 

17 1.2 1.8 47 43 8.51 

23 0.8 0.9 62 58 6.45 

36 0.9 1.7 81 75 7.41 

41 1.4 1.1 123 113 8.13 

59 2.8 0.7 187 174 6.95 

63 2.1 1.3 265 239 9.81 

75 1.8 0.4 334 308 7.78 

Group 1: Ec=1.8 

7 0.9 0.2 29 27 6.9 

17 1.2 1.8 47 41 12.8 

23 1.8 0.9 62 56 9.68 

36 0.9 0.7 81 71 12.3 

41 1.4 1.1 123 112 8.94 

59 2.8 0.7 187 172 8.02 

63 2.1 1.3 265 236 10.9 

75 1.8 0.4 334 302 9.58 
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   The benchmarks, varying independently in DWR, CER, 
and EC, allow PGA and GA to be fairly evaluated by a 
test bench that does not take advantage of any special 
generating strategy. 

For Tables V, the solution obtained by the PGA 
algorithm is better than the GA algorithm and is within 
9% of the optimal schedule. For Tables VI, the solution 
obtained by the PGA algorithm is better than the HEFT 
algorithm and is within 13% of the optimal schedule with 
substantial improvements of at least 5%. As EC increased, 
the relative performance of the PGA algorithm increased 
as the improved performance of PGA is due to the 
heterogeneous. It is conceivable that as CER, and 
consequently the communication cost increases, the 
effects of PGA’s become obvious relative to HEFT. It is 
similarly expected that as DWR increases the parallelism 
of the DAG will improving the performance of PGA.  

V.  CONCLUSION  

In this paper, the problem of task scheduling is stated 
as minimizing the schedule length for the tasks scheduled 
on heterogeneous processors. A hybrid algorithm(PGA) 
is proposed by combining the PSO strategy and modified 
genetic operators together. Genetic algorithm is a well-
studied heuristic for the task scheduling problem 
dedicated to minimize makespan of the schedule. A fairly 
expressive solution representation and the incorporation 
of smart heuristics, resulted in increased complexity. A 
generate operator is presented in this paper to generate 
feasible initial population by effectively using list 
scheduling strategy. And modified crossover and 
mutation operators facilitates the generation of the 
offspring and guarantees the feasibility of the new 
population. PSO strategy is incorporated to guiding the 
search more effectively based on local and global 
information together. A mapping mechanism is presented 
between the particle of swarm and the scheduled task and 
is used in the order of tasks to be scheduled without 
interference to the assignment of tasks.  

For DAGs randomly generated under various 
parameters, PGA algorithm is experimentally shown to 
outperform a leading genetic algorithm and a leading list 
scheduling algorithm. 
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