
A Hybrid Method for XML Clustering by
Structure and Content

Yong Piao and Xiu-kun Wang

School of Electronic and Information Engineering, Dalian University of Technology, Dalian, China
Email: {piaoy, jsjwxk}@dlut.edu.cn

Abstract—An effective XML cluster method called neighbor
center clustering algorithm (NCC) is presented in this paper,
whose similarity is obtained through both structural and
content information contained in XML files. Structural
similarity is firstly measured by frequency-path model and
its similarity calculation algorithm with position and
frequency weight by longest common subsequence is
introduced. In order to improve the performance and
precision, the frequency-path model is further extended by
considering the structure and content information
simultaneously. Experiments show that the NCC embed
with hybrid similarity calculation method can obtain high
purity and F-measure value and is effective and applicable
for clustering XML with both homogenous and
heterogeneous structures.

Index Terms—neighbor center clustering, position and
frequency weight, longest common subsequence, hybrid
similarity calculation

I. INTRODUCTION

XML (eXtensible Markup Language), as a common
data representation and exchange format on the Internet,
contains a rich entailment of information. Also, data
mining on XML has become an important part in text
mining research, in which large-scale text clustering is
one of the effective solutions for massive texts. An
efficient and fast XML clustering mechanism, which can
provide better data for decision support, will greatly
shorten the information retrieval time, improve the
efficiency of data query and help find out potential value
of information. The most important feature of XML
document, which is different from other textural ones, is
its structural character. For this reason, we believe that
the structure of XML should also play important role in
XML clustering.

Considering the structural character of XML
documents, many traditional text clustering methods are
not suitable for XML. Currently, partitioning and
hierarchical methods are most widely used in XML
clustering [1-3], but the effect of these two traditional
methods in dealing with irregular non-spherical

document clustering is not so satisfactory, and besides,
they are not well in distinguishing noise or isolated points
effectively. In terms of computational complexity, the
searching time of traditional methods for cluster centers
increase rapidly, this is an obstacle to get better
performance in XML clustering. In addition, traditional
partitioning methods represented by K-Means and K-
Medoids have to be specified the clusters number K in
advance. Due to these reasons, a neighbor center
clustering algorithm with similarity (NCC) is proposed in
this situation. It is not only simple, but can find non-
spherical structure documents and distinguish noise or
isolated point effectively as well.

Similarity among documents is the key issue in the
field of document clustering. So far, the methods
proposed for this purpose can be roughly classified into
three types, namely by the graph matching, by the edit
distance or by the tree path model. Reference [4]
describes an XML document with a directed graph and
calculates similarity between XML documents by graph
matching in order to cluster XML with similar structure.
But the result is not satisfactory due to its low accuracy.
Reference [5] improves [4], in which its method leads to
some limitations to clustering results without considering
the order relationships between edges in the discussion of
equal direct edges. Reference [6] and [7] introduce a
concept of edit distance. Reference [6] calculates the
similarity with graph matching algorithm by describing
XML as a directed graph, while [7] uses tree editing
distance to calculate the similarity, so do [1,8,9].
However, it is not suitable for document processing due
to its high computational complexity. As the graph
cannot express XML structure well, Reference [10]
proposes a tree path model representation, which is
simpler than the tree editing distance with a lower time
complexity, but it uses a complete path matching method
widely while handling the matching procedures, so do
references [11,12] in frequent path mining and matching,
including its improvement [13]. The complete path
matching method is useful in XML clustering in tree path
models because XML structure information ignored by
the complete path matching has little impact on clustering
XML which have the same DTD, but it is not true if their
DTDs are different, e.g. they have various structures.

In this paper our similarity measurement among XML
documents with different structures is firstly presented,

Corresponding author: Yong PIAO

JOURNAL OF SOFTWARE, VOL. 6, NO. 12, DECEMBER 2011 2361

© 2011 ACADEMY PUBLISHER
doi:10.4304/jsw.6.12.2361-2368

which is a similarity calculation algorithm with position
and frequency weight by longest common subsequence
(PFWLCS). On the basis of expressing XML document
structures by correspondent paths using DOM tree, we
extend the original tree path model to the frequency-path
model by which we not only preserve label information of
correspondent nodes, which decrease the original tree path
model scale consumedly on the condition of not losing
meaningful information and reduce the burden for later
calculation, but also save the frequency structure of the
original XML to improve the accuracy of the similarity. It
makes the calculated similarity closer to the actual value
by using the longest common subsequence method with
position and frequency information. Furthermore, we
continue to improve the frequency-path model by also
considering node textural content, which makes the result
more accurate and applicable, e.g. the hybrid method.

In Section II, Frequency-Path model and basic idea of
hybrid similarity calculation methods are briefly
introduced, followed by main steps of cluster algorithm
NCC in detailed description in Section III. In Section IV
experiments and its results are given showing better
performance of our methods. Finally we summarize the
whole work and provide future applications and research
directions.

II. SIMILARITY CALCULATION

A. Structural Similarity
1) Frequency-Path Model
Definition 1: FPath=(f, v1, v2, …, vm, c1, c2, …, cm),

where f denotes the number of occurrences of path in the
current document; (v1,v2,…,vm) is a node sequence from
the root of XML DOM tree to one of its leaves; the ci in
(c1,c2,…,cm) denotes the number of occurrences of vi,
whose ancestor nodes v1,v2,…,vi-1 are the same; m denotes
the length of FPath (the node sequence).

Definition 2: XMLDoc=(FPath1, FPath2, ..., FPathn),
FPathi and FPathj are not the same FPath. We call two
FPaths same only if the nodes at corresponding location
of the two FPaths are completely identical. n denotes the
number of various FPath.

Before calculating the similarity of XML, we extract
the structure information of XML into FPaths where only
the label of the node (structure) is considered. Other
information such as data type and constraints are ignored.
In Fig. 1 is an XML tree model and in Fig. 2 is a path
model with its statistical information.

2) Frequency-Path Model Generation
Fig. 3 is the pseudo code of the algorithm to create the

FPath model from XML document. The input of this
algorithm is an XML document and output is an FPath
model of it.

We also consider the semantic meanings that a node
name can have during the structure matching. It is
necessary since we are aiming at XML documents from
different DTDs, which may not use the same word to
express the similar meaning. For expressing the similar

meaning only one word was taken from the synonymous
word sets provided by WordNet. Besides, we assume that
the node in higher hierarchy contributes more to the
similarity than in lower hierarchy during the FPath
matching. We will cover that in detail later.

Figure 1. XML DOM Model

For reducing the complexity of getting semantic FPath,
we use a parameter ζ to denote the depth of the node
hierarchy being considered. For example, if ζ=1, we just
consider the meaning of the first node (root) of FPath.

Figure 2. A frequency-path model

3) Algorithm PFWLCS
In this part the algorithm PFWLCS (Position and

Frequency Weight by Longest Common Subsequence)
used to calculate structural similarity of XML documents
is described.

Definition 3: Subsequence: we call <ai1, ai2, …, aik> a
subsequence of <a1, a2, …, an>, only if
1<=i1<i2<…<ik<=n.

Definition 4: Common subsequence: we call <c1, c2, …,
ck> one common subsequence of <a1, a2, …, an> and <b1,
b2, …, bm>, only when <c1, c2, …, ck> is a subsequence of
<a1, a2, …, an> and also a subsequence of <b1, b2, …,
bm>, k denotes the length of the common subsequence
<c1, c2, …, ck>.

In our method, we use Longest Common Subsequence
(LCS) in matching two given paths. In Table I different
situations are illustrated by xPath [10-12], PCXSS [13]
and LCS[14-15] respectively, showing more information
can be kept by using LCS than other methods.

1 automobile manufacturer 20 1
1 automobile model 20 1
1 automobile year 20 1
1 automobile engine type 20 1 1
1 automobile transmission 20 1
1 automobile feature safety 20 15 1
1 automobile feature drive 20 15 1
1 automobile feature seat 20 15 1
1 automobile feature mpg 20 15 1
9 automobile feature pro 20 15 9
2 automobile feature con 20 15 2

2362 JOURNAL OF SOFTWARE, VOL. 6, NO. 12, DECEMBER 2011

© 2011 ACADEMY PUBLISHER

Figure 3. FPath model generation

We introduce a position-frequency weight vector
[W(1), W(2), …, W(n)], where (1, 2, ..., n) is the index of
nodes in a FPath, representing the hierarchy level. We
assume that the node in higher hierarchy contributes more
to the similarity than in lower hierarchy during FPath
matching. Then the weight function W(i) must be
digressive with i increases. In addition, W(i) also has the
character below.

W(i)>0, ∑W(i)=1 (i=1, …, n)

TABLE I.

PATH MATCHING USING DIFFERENT METHODS

No. Path1 Path2 LCS PCXSS xPath

1 (a,b) (a,b,y) (a,b) (a,b) NULL

2 (a,b) (y,a,b) (a,b) (a,b) NULL

3 (x,a,b) (y,a,b) (a,b) (a,b) NULL

4 (a,b,x) (a,b,y) (a,b) NULL NULL

5 (a,b,x) (a,k,b,y) (a,b) NULL NULL

6 (a,h,b,x) (a,k,b,y) (a,b) NULL NULL

7 (a,b,x,h) (a,b,y,k) (a,b) NULL NULL

To further explain the necessity for position-frequency

weight vector, the followings are discussed.
Suppose there are several paths when calculating the

XML document similarity: P1(1, a, b, c, 1, 1, 1), P2(1, a,
b, x, 1, 1, 1), P3(1, a, x, b, 1, 1, 1), P4(2, a, b, x, 2, 2, 1).

For the similarity comparison of actual data, the nodes
in higher hierarchy have greater effect in the XML
document tree, namely the more front position the node is
at, the more contributions to the similarity during FPath
matching. Therefore, the similarity between P1 and P2 is
significantly higher than it between P1 and P3. It shows

the weight function W(i) is closely related to the position
factor, namely position weight T(i).

We also notice that the similarity degree between P1
and P4 is significantly greater than it between P1 and P2.
That is because in the case of FPaths with the same node
position, higher frequency of the same node indicates its
role is more dominant than other nodes. Hence, the weight
function W(i) is also closely related to node’s frequency
factor, namely frequency weight F(i).

From the above, the position-frequency weight function
W(i) is composed of T(i) and F(i), where the position
weight function T(i) =1/2i . As for the frequency weight
function F(i), we first define frequency equation of node
Vi as cilog(ci/fs+1) (ci is from the definition 1; fs is ∑f for
all FPaths in the document). Then the normalized function
of frequency weight can be expressed as (1).

1
() log(/ 1) log(/ 1)

n

i i s i i s
i

F i c c f c c f
=

= + +∑ (1)

and the position-frequency weight function W(i) is,
W(i) = (T(i) + F(i))/2 (2)

We prove that (2) satisfies the features of W(i), e.g.

W(i)>0 and ∑W(i)=1.
1

() (() ())21 1

1 (() ())
2 1 1

1 1 log(/ 1)()
2 21 1 log(/ 1)

1
1 1(1)
21 12(1) 11 12 21

2

1
() lim (1) 1121

n n
W i T i F i

i i
n n

T i F i
i i
n n Ci Ci fs

i ni i Ci Ci fs
i

n
n

n
n W i ni n

∑ ∑= +
= =

= +∑ ∑
= =

+
= +∑ ∑

= = +∑
=

−
= + = −

+
−

∑∴ → ∞ = − =+= →∞
，

Definition 5: FPath similarity: Suppose two FPaths,
FPath1 =(fp1, x1, x2, …, xn, cx1, cx2, …, cxn), FPath2 = (fp2,
y1, y2, …, ym, cy1, cy2, …, cym), the longest common
subsequence (LCS) is LCSPath=(z1, z2, ..., zk), the
hierarchy of the nodes in LCSPath in FPath1 is
Hierarchy1=(l1, l2, ..., lk) orderly, the hierarchy of the
nodes in LCSPath in FPath2 is Hierarchy2= (h1, h2, ..., hk)
orderly. Then the similarity of FPath1 and FPath2 is
described as (3) below.

k n k m

i=1 j=1 i=1 j=1

similarity= () ()+ () () 2i iW W j W W jl h
⎛ ⎞
⎜ ⎟
⎝ ⎠
∑ ∑ ∑ ∑

 (3)
In some practical situations, the occurrence number of

the same path is also an important component of XML
structure information, but (3) does not contain the path
frequency information and just uses label information,
thus leading to the situation that the calculated result does
not represent the true sense of XML similarity. So we
integrate the path frequency into (3) in order to make the
result closer to actual value.

From definition 5, fp1 and fp2 are the occurrence
numbers of FPath1 and FPath2, while fp1/ fs1 and fp2/ fs2

Name: getMypathModel
Input: an XML document to: xmlDocumentName
 node hierarchy: ζ
Output: a text document stored F_Path model: mypathModel
Pseudo code: void getMypathModel

(xmlDocumentName, ζ, mypathModel.txt)
{doc=getDocument(xmlDocumentName);

//Parse XML document
root=getRoot(doc);//get doc root
getMypathModel(root, mypathModel);
//get the paths and store in mypathModel.txt

//the semantic process
Initialize wordList //for the semantic process
while(ζ>0){

for (each Path in mypathModel.txt){
node=getNodeFromPath(ζ);//get the ζ node
if(node exists in Line j of wordList)

Use the first word of Line j in wordlist to
 replace node;

else
Insert node and its synonymous words into
a new line in wordlist;

}
ζ--;

}}

JOURNAL OF SOFTWARE, VOL. 6, NO. 12, DECEMBER 2011 2363

© 2011 ACADEMY PUBLISHER

are the path frequencies of FPath1 and FPath2 (fs1 is the
sum of all path frequency in FPath1, and fs2 is the sum of
all path frequency in FPath2). On the basis of the TF-IDF
statistics theory widely used in text mining, we assume
that, the larger the recurrent number of a path in XML is,
the higher path frequency it is. That is to say, the more
important the path is, the more structure information the
path contains. Therefore, the similarity of path should be
appropriate to be improved, in which the path frequency
is large and the degree of increasing similarity should be
within the scope of [1-∑iW(li)]/ ∑jW(j), i=1..k, j=1..n, so
(3) is modified as follows.

k k k k

1 2i=1 i=1 i=1 i=1
n n m m

1 2

j=1 j=1 j=1 j=1

() () () ()
similarity= (1 (1))+ (1 (1)) 2

() () () ()

i i i ip p

s s

W W W W
f f
f fW j W j W j W j

l l h h
⎛ ⎞
⎜ ⎟
⎜ ⎟+ − + −
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ (4)

Definition 6: XML document similarity: Suppose two
XMLDocs, XMLDoc1= (FPath1, FPath2, ..., FPathn),
XMLDoc2= (FPath1’, FPath2’, ..., FPathm’), m>=n, Each
FPath in XMLDoc1 finds LCS with every FPath in
XMLDoc2, and calculates the similarity according to (4).
We denote the biggest similarity as si, the similarity
between XMLDoc1 and XMLDoc2 is formed with (5)
below.

n n

i=1 i=1

Similarity= + 2
i i

n ms s⎛ ⎞
⎜ ⎟
⎝ ⎠
∑ ∑

 (5)

Figure 4. PFWLCS algorithm

Fig. 4 is the pseudo code of the algorithm to calculate
the similarity of XML document based on the FPath
model. The input of this algorithm is two FPath models,
and the output is the similarity of the two XML
documents, from which the two inputted FPath models
come.

B. Hybrid XML similarity calculation

The PFWLCS algorithm based on frequency and path
is introduced previously. Although it can obtain better
result when processing XMLs from different DTDs,
structured information is mainly concerned, e.g. structural
similarity without considering node content. We know
that the content feature of XML structure has also effects
on XML document classification and clustering and has
contributions to the result of data mining, which should
not be ignored.

The content information is the textual part between
tags. A method called SCSC (Similarity Calculation with
Structure and Content) is presented in this subsection. The
Frequency-path model is firstly improved in SCSC by
adding the element content vector under the same path,
making the presentation of XML documents richer.
Moreover, a level ratio is introduced in XML similarity
calculation, considering both the structural and element
content similarity and making the result more sensible.

1) Improved frequency-path model
Definition 7: Improved tree path model: IFPath=(f,

v1,v2,…,vm , /E/,c1,c2,…,cm), where f denotes the number of
occurrences of path in the current document; (v1,v2,…,vm)
is a node sequence from the root of XML DOM tree to
one of its leaves; E is a content vector (e1,e2,…,et) under
structural path (v1,v2,…,vm); the ci in (c1,c2,…,cm) denotes
the number of occurrences of vi, whose ancestor nodes
v1,v2,…,vi-1 are the same; m denotes the length of IFPath
(the node sequence).

Figure 5. An improved FPath model

Example in Fig. 5 is improved based on the model

introduced before. A content vector (e1,e2,…,et) is
supplemented, by which the XML content information is

1 automobile manufacturer / Cadillac / 20 1
1 automobile model / Cadillac CTS / 20 1
1 automobile year /2004 / 20 1
1 automobile engine type / 255 hp / 20 1 1
1 automobile transmission / Speed Manua / 20 1
1 automobile feature safety

/ Driver-Passenger airbags / 20 15 1
1 automobile feature drive / RWD / 20 15 1
1 automobile feature seat / 5 / 20 15 1
1 automobile feature mpg / City / 20 15 1
9 automobile feature pro

/ ABS Air Base CD Player Leather
 Seats Side Theft Tracking
 Traction Control Highway / 20 15 9
2 automobile feature con

/ Transmission Changer / 20 15 2

Name: PFWLCS
Input: two F_Path model: mypathModel_1, mypathModel_2
Output: similarity of two Documents
Pseudo code: double getPFWLCSSimilarity

(mypathModel_1, mypathModel_2)
{ //n1, n2: number of paths in mypathModel_1, mypathModel_2

Initialize n1, n2;
//fs1, fs2: sum of path frequencies in the two models
Initialize fs1, fs2;
if(n1>n2)

return getSimilarity(mypathModel_2, mypathModel_1);
else{

for(each path p1_i in mypathModel_1){
for(each path p2_j in mypathModel_2){
//a1, a2: position-frequency weights of p1_i,p2_j
Initialize a1, a2;
//get the longest common path of p1_i,p2_j
lcs=getLCS(p1_i,p2_j);
//w1,w2: position-frequency weights of the lcs
Initialize w1,w2;
im1=w1/a1;
sim2=w2/a2;
//f1,f2: path frequency of p1_i,p2_j
Initialize f1,f2;
sim=(sim*(1+(1-sim1)f1/fs1)

+sim2*(1+(1-sim2)f2/fs2))/2;
}
similarity += sim;

}
}
//get the similarity of documents
similarity=(similarity/n1+similarity/n2)/2;
return similarity;

}

2364 JOURNAL OF SOFTWARE, VOL. 6, NO. 12, DECEMBER 2011

© 2011 ACADEMY PUBLISHER

further kept, making hybrid computation of XML
similarity of both structure and content possible.

2) Content similarity calculation
Suppose we have two paths P1 and P2 belonging to

documents D1 and D2 respectively, E1 is content vector of
P1 and E2 is content vector of P2.

Before processing, we use TF-IDF theory to complete
feature word selection and extraction against E1 and E2,
resulting in feature word vector E1’ and E2’. Then we use
cosine similarity equation to get content similarity.

Similarity(content) =
n1+n2
ω

 (6)

Where n1 is the dimension of E1’ and n2 is the
dimension of E2’, ω is the number of common feature
words E1’ and E2’ have.

3) Overall Similarity Calculation
Due to the reason that a new part is added to the

frequency-path model, the original similarity calculation
method is about to be modified accordingly. Similarity of
a complete document is defined:

Sim =α*Sim content +(1-α)* Sim structure (7)

The final similarity is determined by both structure and
content similarity, where α is called the level ratio
parameter, presenting the structure layer of the element
content. Structural similarity is still calculated using
PFWLCS algorithm.

The higher level an element is at, the more closely it is
to root node and has more contribution. That is, the level
ratio factor α is greater and so has close relation with the
position factor T(i):

α=(T(i)+T(j))/2.
T(i) and T(j) are two position weights of the last nodes

in the compared paths separately.

III. XML DOCUMENTS CLUSTERING

A. Steps of Algorithm NCC
1) A point is chosen as the initial cluster center O1

from a data set.
2) Set the center threshold parameter (ξ1, ξ1≥0). Then

the similarity of O1 between each remaining points from
the data set is calculated and compared. If the similarity is
greater than ξ1, the point will be put into the cluster C1,
where O1 is in.

3) Set the neighbor threshold parameter (ξ2, ξ2≥ξ1). At
this time, the similarity of the points except O1 in C1 with
the remaining points from the data set is calculated and
compared again. If the similarity is greater than ξ2, the
point will be put into the cluster C1.

4) Set the isolated threshold parameter (φ, φ=1, 2… n).
If the number of points in C1 is less than φ, the cluster C1
will be discarded.

5) A point is chosen as another cluster center O2 from
the remaining points in the data set. Repeat 2) 3) 4) steps
until there are no points in the data set left.

Figure 6. SCSC algorithm

B. Analyses of NCC
The basic idea of NCC algorithm is trying to identify

the actual cluster from the data set in each iterative step
greedily. Below explains the main idea of NCC algorithm.

Considering the XML document set D={d1, d2, d3, d4,
d5, d6} (di denotes the ith XML document), where d1, d2,
d3, d4, d5 are actually in the same cluster, while d6 is in
another one. Set the parameters (ξ1=0, ξ2=0.1, φ=1).

NCC arbitrarily selects d1 as the initial cluster center
and then finds the similarity between d1 and d2 greater
than ξ1, so d2 is put into the cluster C1, where d1 is. So
does d3. At the moment, in order to avoid the situation that
the chosen cluster center may be irrelevant resulting in
imperfect clusters, it calculates and compares the
similarity of the points except d1 in C1, in this case d2 and
d3, with the remaining points. The purpose here is to
spread the function of cluster center out over the
neighborhood points in one cluster, which tries the
number of matched points into one cluster, e.g. C1, as
many as possible. In Fig. 7, d4 and d5 are also put into the
cluster because of d2 and d3.

Compared with some traditional algorithms, the NCC
algorithm reduces the repeated calculation complexity on
choosing cluster center in each iterative step, and
improves overall efficiency. The clustering result from Fig.

Name: Similarity calculation using SCSC
Input: Two improved frequency-path models:

mypathModel_1, mypathModel_2
Output: Similarity score between the two documents
Process: double getSimilarity

(mypathModel_1, mypathModel_2)
{ Initialize n1, n2;

//n1, n2: number of different paths in the two models
if(n1>n2)

return getSimilarity(mypathModel_2, mypathModel_1);
else{

//Extract element content feature words using TF-IDF
mypathModel_1’=do_TFIDF(mypathModel_1);
mypathModel_2’=do_TFIDF(mypathModel_2);
for(each path p1_i in mypathModel_1’){

for(each path p2_j in mypathModel_2’){
//Get structural similarity using PFWLCS
SimS=getPFWLCSSimilarity(p1_i, p2_j);
//Get number of common feature words
w=getCommonElet(p1_i, p2_j);
//t1, t2: number of feature words
Initialize t1, t2;
//Calculate content similarity
SimC=w/sqrt(t1+t2);
//Ti, Tj: position weights of last nodes
//in p1_i, p2_j
Initialize Ti, Tj;
//calculate level ratio factor
a=getPostion();
//calculate similarity between two paths
sim=a*SimC (1-a)*SimS

}
similarity +=sim;

}}
similarity=(similarity/n1+similarity/n2)/2;
return similarity;}

JOURNAL OF SOFTWARE, VOL. 6, NO. 12, DECEMBER 2011 2365

© 2011 ACADEMY PUBLISHER

7 is non-spherical, and besides, isolated points or isolated
clusters are also identified, e.g. the point d6 in the Figure.

Figure 7. An Example of NCC clusters

NCC algorithm is suitable for XML clustering

considering the XML structural character, while some
vectorization methods ignore this kind of information
during their calculation. It not only retains XML
document’s structural information, but also evaluates
XML’s textual meaning when with the method SCSC
embedded. Therefore, the NCC algorithm based on SCSC
has advantages in XML document clustering.

C. Evaluation of NCC
At present the two parameter indexes used widely to

evaluate the overall performance of a clustering algorithm
are the Purity and F-measure. The experimental data are
the known document set or have usually been categorized
before evaluation [16]. The purity of the cluster r is
defined as follows:

1P(Sr)= * ()i
r

r
Max n

n

The purity of the overall clustering is defined as:

1

Purity= P(Sr)
k

r

r

n
n=

∑

Where ni
r is the number of document belonging to type

i, which is assigned to cluster r; nr is the number of
documents in cluster r; n is the number of the whole
document set.

High purity can be easily achieved when the number of
clusters becomes larger. In particular, the purity will be 1
if each document gets its own cluster. Thus, F-measure is
introduced as a harmonic mean to combine both precision
and recall factors.

Recall: Recall(i,r) = n(i,r) / ni
Precision: Precision(i,r) = n(i,r) / nr
where n(i,r) is the number of document belonging to

type i in the cluster r; nr is the number of document in
cluster r; ni is the number of documents of type i. So the
F-measure between cluster r and type i is defined as
follows.

2 * (,) * (,)f(i,r)=
(,) (,)

recall i r precision i r
recall i r precision i r+

The F-measure of the overall clustering is defined as:

F= Max{f(i,r)}r

i

n
n∑

IV. EXPERIMENT AND DISCUSSION

The goal of our experiments is to examine the
effectiveness of the SCSC by calculating the similarity of
XML documents using both structure and content
information. Further, SCSC is embedded into NCC in
clustering XML and we obtained satisfactory results.

Two data sets are used in the following experiments.
The first data set used in our experiment is a real life data
set introduced in [17], which is generated in the
XML/XSLT version of web pages from 20 different sites
belonging to 4 categories, labeled as “automobile” ,
“movie” , “reference” and “software”. There are a total of
120 documents: 24 in “automobile”, 24 in “movie”, 48 in
“reference” and 24 in “software”. There is no cross-
labeling and the depth of the DOM tree of these XML
documents is 5. The second data set is from Sigmod XML
collection, 84 files and 4 DTDs are included.

In the experiments, NCC method is used to cluster the
two data sets and evaluate results according the recall
ratio, accuracy and F-measure introduced before.

First we use improved frequency-path model to extract
information from all documents, then complete feature
selection and extraction. We randomly choose one file
from two data sets as cluster center and calculate
similarities of other files against the cluster center
respectively, this process is repeated 10 times and the
result is as following:

TABLE II.

EXPERIMENT RESULT
 DataSet1

(SCSC)
DataSet1
(PFWLCS)

DataSet2
(SCSC)

Average
Values

Recall Ratio 81.13% 83.02% 88.56%
Accuracy 94.08% 94.29% 95.81%
F-measure 87.13% 88.30% 92.17%
Purity 94.35% 93.89% 85.96%
Clusters 3.72 3.80 3.87

From the Table II, results of dataset1 and dataset 2 are

all satisfactory. Specifically, results of the first two
columns, e.g. dataset1 (SCSC) considers both the structure
and content information, while dataset1 (PFWLCS) is
calculated by considering only structure information. Each
item of dataset1 (SCSC) is a little lower than dataset1
(PFWLCS), that is because in dataset1 XML files are
from many different DTDs, even in the same cluster.
Therefore structural information plays more important
role than content information in this situation. However,
considering both the structure and content information is
more nature and reasonable in practice and can reflect
more real feature of data.

A good similarity calculation will make the similarity
closer within one cluster and larger outside the cluster. In
the following experiments, we pick up one file arbitrary
from 4 clusters of the two datasets separately. We
compare the similarity of this file to other files in its
cluster and repeat this process 10 times. The following
results are obtained.

2366 JOURNAL OF SOFTWARE, VOL. 6, NO. 12, DECEMBER 2011

© 2011 ACADEMY PUBLISHER

TABLE III.
 SIMILARITY COMPARISON IN DATASET1

SimAvg(Si,Sj) S1 S2 S3 S4
S1 0.4853 0.0054 0.0026 0.0018
S2 0.0054 0.4526 0.0021 0.0034
S3 0.0026 0.0021 0.4722 0.0012
S4 0.0018 0.0034 0.0012 0.4336

Si is the ith cluster in Dataset1, SimAvg(Si, Sj) is the

average similarity between documents in cluster Si and Sj.
TABLE IV.

SIMILARITY COMPARISON IN DATASET2

SimAvg(Ci,Cj) C1 C2 C3 C4
C1 0.9646 0.1326 0.1464 0.1318
C2 0.1326 0.9524 0.1298 0.1431
C3 0.1464 0.1298 0.9346 0.1373
C4 0.1318 0.1431 0.1373 0.9546

Ci is ith cluster in Dataset2, SimAvg(Ci,Cj) is the average

similarity of documents in clusters Ci and Cj.
From the two tables above, Similarities in the same

cluster are all far greater than in other clusters using
SCSC. We also notice that scores of dataset2 is a litter
greater than in dataset1, this is because most XML files in
dataset1 are from different DTDs and structure
information become more significant, while in dataset2
XML files in one cluster are most from same DTD and
content information become important. Anyway, SCSC
can handle both of these conditions and results showing
that the hybrid method is more applicable and effective.

V. CONCLUSION

We have demonstrated an XML document clustering
method NCC, when embed with SCSC higher
effectiveness will be achieved by considering both
structure and content similarity. On one hand, the
structural similarity is calculated using method PFWLCS
with position frequency weight, based on frequency path
model, in which more valuable information in XML
clustering is kept using the longest common subsequence
method and the position frequency weight vector. On the
other hand, XML’s content similarity is obtained through
TF-IDF method. Experiments showed SCSC method
could greatly help to improve clustering precision and
performance, decrease complexity when embedded in
NCC, and is suitable to both homogenous and
heterogeneous XML documents.

REFERENCES

[1] T. Dalamagas, T. Cheng, K. J. Winkel, and T. Sellis, “A
Methodology for Clustering XML Documents by
Structure,” Information Systems, vol. 31, pp. 187-228,
2006.

[2] G. Costa, G. Manco, R. Ortale, and A. Tagarelli, “A Tree-
Based Approach to Clustering XML Documents by
Structure,” Knowledge Discovery in Databases: PKDD
2004, pp. 137-148, 2004.

[3] Pan Youneng, “Research on XML Document Cluster,”
Journal of the China Society for Scientific and Technical
Information, 2006, 25(2).

[4] Wang Lian, David Wai-Lok Cheung, Nikos Mamoulis, and
Siu-Ming Yiu, “An Efficient and Scalable Algorithm for
Clustering XML Documents by Structure,” IEEE
Transactions on Knowledge and Data Engineering, 2004,
16(1), pp. 82-96.

[5] Liu Jiang and Wang Jun, “Reseach on Web XML
Document Clustering,” Public Science, 1002-
6908(2007)0620038-03.

[6] Sudarshan S. Chawathe, Anand Rajaraman, Hector Garcia-
Molina, and Jennifer Widom, “Change Detection in
Hierarchically Structured Information,” In Proceedings of
the 1996 ACM SIGMOD international conference on
Management of data, 1996, pp. 493-504.

[7] Zhang K and Shasha D, “On the Editing Distance between
Unordered Labeled Trees,” Information Processing
Letters, 1992, 42(3), pp. 133-139.

[8] A. Wojnar, I. Mlynkova and J. Dokulil, “Structural and
Semantic Aspects of Similarity of Document Type
Definitions and XML Schemas,” Information Sciences,
vol. 180, pp. 1817-1836, 2010.

[9] M. Torjmen, K. Pinel-Sauvagnat, and M. Boughanem,
“Towards a Structure-based Multimedia Retrieval Model,”
in 1st International ACM Conference on Multimedia
Information Retrieval, MIR2008, August 30, 2008 -
August 31, 2008, Vancouver, BC, Canada, 2008, pp. 350-
357.

[10] Sachindra Joshi, Neeraj Agrawal, Raghu Krishnapuram,
and Sumit Negi, “A Bag of Paths Model for Measuring
Structural Similarity in Web Documents,” SIGKDD’03,
2003, pp. 24-27.

[11] YANG Hou-Qun, HE Zhong-Sh, and LEI Jing-Sheng,
“Research of Clustering XML Documents Based on
Partition,” Computer Science, 2008, 35(3).

[12] Ho-pong Leung, Fu-lai Chung, Stephen C.F. Chan, and
Robert Luk, “XML Document Clustering Using Common
XPath,” In Proceedings of the 2005 International
Workshop on Challenges in Web Information Retrieval
and Integration, WIRI’05, 2005, pp. 91-96.

[13] T. Tran and R. Nayak, “Evaluating the Performance of
XML Document Clustering by Structure Only,” in 5th
International Workshop of the Initiative for the Evaluation
of XML Retrieval, INEX 2006, December 17, 2006 -
December 20, 2006, Dagstuhl Castle, Germany, 2007, pp.
473-484.

[14] PIAO Yong, TIAN Wei, and WANG XiuKun, “An
Effective Path-based Algorithm to Calculate XML
Similarity,” Control and Decision, 2010, 25(4), pp. 497-
501.

[15] Y. Piao and X. K. Wang, “A Hybrid Method for XML
Clustering,” in 3rd International Symposium on Parallel
Architectures, Algorithms and Programming, PAAP 2010,
December 18-20, 2010, Dalian, China, 2010, pp.286-290.

[16] Christopher D. Manning, Prabhakar Raghavan, and
Hinrich Schütze, “An Introduction to Information
Retrieval,” Cambridge University Press, Cambridge,
England, 2009, pp. 356-360.

[17] A. Kurt and T. Engin, “Classification of XSLT-generated
Web Documents with Support Vector Machines,” In
Knowledge Discovery from XML Documents, 2006, pp.33-
42.

[18] E. Bertino, G. Guerrini and M. Mesiti, “Measuring the
Structural Similarity among XML Documents and DTDs,”

JOURNAL OF SOFTWARE, VOL. 6, NO. 12, DECEMBER 2011 2367

© 2011 ACADEMY PUBLISHER

Journal of Intelligent Information Systems, vol. 30, pp. 55-
92, 2008.

[19] E. Bertino, G. Guerrini and M. Mesiti, “A Matching
Algorithm for Measuring the Structural Similarity between
an XML Document and a DTD and its Applications,”
Information Systems, vol. 29, pp. 23-46, 2004.

[20] C. Wang, X. Yuan, H. Zhang, B. Sun, and H. Zhang,
“Structural Query and Ranking for XML Information
Retrieval,” Journal of Computational Information Systems,
vol. 5, pp. 1429-1435, 2009.

[21] H. Zhang, X. Yuan, N. Yang, and Z. Liu, “Similarity
Computation for XML Documents by XML Element
Sequence Patterns,” Progress in WWW Research and
Development, pp. 227-232, 2008.

[22] C. Wang, X. Yuan, H. Ning, and X. Lian, “Similarity
Evaluation of XML Documents Based on Weighted
Element Tree Model,” Advanced Data Mining and
Applications, pp. 680-687, 2009.

[23] A. Nierman and H. V. Jagadish, “Evaluating Structural
Similarity in XML Documents,” in Proceedings of the

Fifth International Workshop on the Web and Databases
WebDB, 2002.

Yong Piao, born in Liaoning province, China, 1975, received
his B.A’s and M.A’s degrees in computer science from Dalian
University and Technology, Dalian, Liaoning, China, in 1998
and 2001 respectively.

From 2002 to 2003, he made an advanced study in EI
department, University of Siegen, Germany. Since 2004 he has
been a lecturer, 2010 an associate professor, in Dalian
University of Technology. His current research interests mainly
cover database and decision support systems.

Xiu-kun Wang, born in 1945. She has been a professor in
Dalian University of Technology. Her main research interests
are data mining, database and decision support systems.

2368 JOURNAL OF SOFTWARE, VOL. 6, NO. 12, DECEMBER 2011

© 2011 ACADEMY PUBLISHER

