
An Efficient Method for Improving Query
Efficiency in Data Warehouse

Zhiwei Ni1,2

1)School of Management, Hefei University of Technology, Hefei , Anhui, China
2)Key Lab. of Process Optimization and Intelligent Decision-making, Ministry of Education, Hefei , Anhui, China

zhwnelson@163.com

Junfeng Guo1,2, Li Wang1,2 and Yazhuo Gao1,2
1)School of Management, Hefei University of Technology, Hefei , Anhui, China

2)Key Lab. of Process Optimization and Intelligent Decision-making, Ministry of Education, Hefei , Anhui, China
alloy1129@yahoo.com.cn, wl820609@163.com, yazhuogao@163.com

Abstract—There are lots of performance bottlenecks for
real-time queries in mass data. Many methods can only
improve the efficiency for frequently used queries, but it is
not advisable to neglect the non-frequently used queries.
This paper proposes a new integrated index model called
BBI and illustrates the application of this model. Based on
the feature of data warehouse and OLAP queries, this index
model is built with inverted index, aggregation table, bitmap
index and b-tree. It greatly promotes not only the efficiency
of frequently used queries, but also the performance of
other queries. The analytical and experimental results
demonstrate the utility of BBI.

Index Terms—Aggregation Table, Inverted Index, Bitmap
Index, B-Tree Index

I. INTRODUCTION
Data warehouse (DW) is defined as a subject-oriented,

integrated, steady and time varying data set which
supports enterprises or organizations to make decisions.
As the decision maker needs to query several values from
one subject for real-time analysis processing, the
multidimensional model of DW is usually implemented as
star schemes to meet the requirements. This kind of
hierarchical model is highly unnormalized and query-
oriented. There are two kinds of table in star schemes.
One is fact table which contains basic quantitative
measurements of a business subject, the other is
dimension table that describes the facts. If there are more
than one fact table in a DW, it can be called galaxy model
which is actually constituted of several star schemes.

Complex queries are always requested in DW. When
users need to process multi-dimensional analysis, multi-
table joins may be involved. Although data can be stored
in a multi-dimensional database, DW usually stores data
in the form of relational database. As the number of
dimension and the overall size of data sets increase, the
size of DW often grows to gigabytes or terabytes. When
the complex queries are implemented on mass multi-
dimensional data， the query efficiency is far beyond
satisfaction. Fact tables in data warehouses which store
business measures usually have millions of records or

more. Such tables usually have more than 10 attribute
dimensions. For example, to select records of which time
between 01/01/2008 and 09/10/2009, it needs to join the
tables and compare the time value of millions of each
record with the requested value. So it is necessary to
retrieve the data more efficiently. Some methods and
technologies were proposed to improve queries efficiency,
such as materialized view[1], feature selection[5], index
technology[3], etc.

Materialized view is a kind of pre-computed structure,
it materializes the calculated results ahead of using. The
pre-computed values are often mean, sum, average, etc.
Queries on materialized views are fast responded, because
no join needs to be made on successive requests, and the
records in views are less than the original tables.
Materialized views can be applied to OLAP, but due to the
limit of storage space, it is infeasible to store results of all
queries. Some heuristic algorithms have been used to find
an approximate optimal solution. For example, greedy and
genetic algorithms that based on requirement and
probability are applied to generate views. But once queries
are made on the records which are not materialized, the
efficiency can not be improved, and it is unacceptable for
any delay when users need the results urgently. So there is
limitation of materialized method.

 Feature selection is a procedure to select a subset
from the original feature set by eliminating redundancy
and less informative features so that the subset contains
only the most discriminative features [4]. Applied to
dimension reduction, a set of attributes that best represents
the overall data set is found out by feature selection. But
feature selection has the same problem with materialized
view that when the queries involve the dimensions which
are not selected, the efficiency of this method deceases.

 Index technology greatly cuts down the load of I/O,
which is highly effective in real application. Compared
with materialized view, the space cost of index is reduced.
Many indexes are classified into data-partitioning indexes,
such as B+ tree and R-tree family and other tree indexes.
B+ tree indexes are often adopted in databases to retrieve
rows of a table with specified values involving one or

JOURNAL OF SOFTWARE, VOL. 6, NO. 5, MAY 2011 857

© 2011 ACADEMY PUBLISHER
doi:10.4304/jsw.6.5.857-865

more columns. Data are placed in some partitions by the
sequence of key values which also need to be pre-
computed. Using these indexes to answer a query, system
should find the partitions which contain the related data by
comparing the key value from the root node to the leaf
nodes. Those all search paths that may be potentially
matched must be explored. Data-partitioning indexes are
effective for single keyword queries. As the dimension
quantity of both the indexes and the queries increases, the
efficiency deceases.

OLAP query includes point query and cube query. It
takes less time to process point query whose result is a
single value or one record. Cube query returns a list of
values or multiple rows of data which are aggregated from
the data set. It needs to traversal the whole data table to
get the data set and is relatively long in the duration of
query implementation. For example, if we need the total
revenue which is sorted only by time and location, it is a
cube query that needs to traversal the whole sale fact table
to aggregate the data. As for OLAP query，the common
index technology can not meet the requirements of query
efficiency. Data cube plays an essential role in fast OLAP
query, but high dimensional data cube requires massive
memory and disk space, and the current algorithms are
unable to materialize the full cube under such conditions.
It is called curse of dimensionality. Besides, it is hard to
build data cubes based on relational databases, so how to
promote the query efficiency becomes the key problem.
As for OLAP application，paper [17] used inverted index
which is common technology of search engine to build
shell cube. Though the new cubing approach reduces the
space cost of data cube and promotes the efficiency of
queries, many queries require to be computed at run time.

Introducing inverted-index in search engine
technology, integrating join-index and materialized view,
we propose a new index model in this paper based on user
interest and query statistics, called BBI. The new index
can not only greatly promote the efficiency of frequently
used queries, but also improve the performance of other
queries. With a good performance in storage size, it is
suitable to be applied in OLAP and other complex queries.

In Section 2, the relevant knowledge of existing
approaches and technology are presented; our approach is
elaborated and the efficiency of the theory is analyzed in
Section 3. BBI is further discussed in Section 4. Section 5
describes the performance evaluation of our approach.
Section 6 is the conclusion.

II. RELATED WORK
There are some feasible methods with acceptable

performance for the queries that require multi-table joins
in high dimension data warehouses when the queries are
based on the dimensions that are important or commonly
used, but not all dimensions can be included with most
methods while the space expense grows rapidly as the
dimension grows. The common technologies are view
materialization, feature selection, index technology, etc.,
they are not independent with each other, and many
researches concentrate on integrating various technologies
to improve the efficiency of DW.

A. Materialized View
Dynamic materialized view [7] selectively materializes

only a subset of rows which are the most frequently
accessed. Compared to conventional materialized view
which maintains all rows of a view, the set of dynamic
materialized views can be changed dynamically and the
storage space is reduced. A method in [8] materializes the
views in a data warehouse to reduce the query response
time. Aiming at the insufficient consideration of the
dynamic update, the method can wash out materialized
views and add new materialized views in the set of current
materialized views on the basis of the greedy algorithm.
Paper [9] proposes a constrained evolutionary algorithm
for materialized views. Constraints are incorporated into
the algorithm through a stochastic ranking procedure [18].
The basic principle of this technology has been well
described in [10] and [11]. But [7], [8], [9], [10], [11] all
avoid the question of generality.

An algorithm is presented in [1] for building
materialized sample views for database approximation.
The core technique is called ACE (Appendability,
Combinability, and Exponentiality) Tree, improved from
B+-tree, that is suitable for organizing and indexing a
sample view, but the algorithm is not useful when
integrated views are needed.

B. Feature selection
Feature selection techniques are targeted at finding a

set of attributes that best represent the overall data. [2], [4]
and [19] are traditional techniques of feature selection
which focus on maximizing data energy or classification
accuracy for dimension reduction [19]. The algorithm in
[4] groups the features into different clusters based on
feature similarity and selects a representative feature from
each cluster, so that the feature redundancy is reduced. As
a result, selected features may have no overlap with
queried attributes. In this case, to neglect any attribute
may bring troubles when queries are based on the
attributes that have not been selected.

C. Index
Patrick O’Neil and Dallan Quass presented a review of

indexing technology in Paper [6] which included join
index, bitmap index and B+-tree. Two indexing structures
called Bit-Sliced indexes and Projection indexes were
introduced as well. The core of the method was the
combination of B+-tree and bitmap index, which was not
complex but effective.

At present, B+-tree and bitmap index are two of the
most important indexes in most database software. In fact,
the new edition of ORACLE database has involved the
improved indexing technology. The key indexes of
ORACLE are shown in Fig. 1 and Fig. 2. Fig. 1 shows the
application of B-tree index. Based on the rules of B-tree,
relational table is divided by a numerical attribute, all
rows of the table are distributed in the leaf nodes of a tree.
In leaf nodes, the values of indexed attribute are
considered as labels. Each label corresponds to a value
called ‘rowid’ which is used to uniquely identify one row
of data in ORACLE database and can be seen as physical
addresses. Leaf nodes are connected by indicator so that it

858 JOURNAL OF SOFTWARE, VOL. 6, NO. 5, MAY 2011

© 2011 ACADEMY PUBLISHER

is convenient to use range query. When queries are made
on keywords, it is rapidly to find the ‘rowid’ in leaf nodes
by b-tree rule and localize the rows of data in database by
‘rowid’. B-tree index in ORACLE is suitable for high-
cardinality columns and it is inexpensive to update on
keys relatively. But it is inefficient for queries using ‘or’
predicates.

Fig. 1. B-tree index in ORACLE

Fig. 1. shows the structure of bitmap index which is
built for gender in ORACLE. The word ‘start’ and ’end’
represent a segment of storage space. The ‘rowid’ of
‘8.0.1’ is the beginning address and ’12.0.1’ is end.
Bitmap shows the distributing of all the gender keywords.
‘1’ means the keyword appears in the row, ‘0’ means the
contrary. Bitmap index in ORACLE is suitable for low-
cardinality columns and it is efficient for queries using OR
predicates. But it is expensive to update key column. At
the same time, each keyword needs a bitmap whose length
is the same as the fact table. When the row number is
large, it is difficult to use and store bitmap. ORACLE
often uses the subsection structures to solve this problem
which also shows in Fig. 2,but as the number of segment
increases, performance decreases quickly, because it
needs to checkall the bitmap segments to find answer.

Fig. 2. Bitmap index in ORACLE

Several papers proposed designs for index
recommendations based on optimization rules [14], [15],
[16].Since the effectiveness of these indexes degrades
when the query patterns change, Michael Gibas and his
collaborators [5] introduced a technique to recommend
indexes based on index types that were frequently used for
high-dimensional data sets and to dynamically adjust
indexes as the underlying query workload changes.

Paper [3] evaluated experimentally the dimension-join
indexes using the TPC-H benchmark and showed a new
index structure using bitmap and B+ tree that can
dramatically improve the performance for some queries.

Papers [12] proposed Hybrid Index which is suitable for
given data by building with B+ tree and hash table, but it
is not universality. Paper [13] introduced a new kind of
multi-table join index and proved it was more effective
than only using multi-table join by experiment. But this
technique also only has the index on the frequently using
data to advance the query performance; it upgrades
nothing when queries are made on the data which has not
been paid attention.

III. APPROACH

A. Inverted Index
Inverted index comes from the functional needs of

attribute retrieval in practice. Each item in the index table
has an attribute value and an ID which corresponds to the
value. Inverted index tables identify ID by attribute, which
is different from the common tables that identify attribute
by ID, that is why it is called inverted index. Table 1 is a
fact table which has three dimension columns and one
numerical value column. Table 2 is the first order inverted
index of table 1. The keyword ‘male’ appears in line 1, 2,
5 in table 1; so there is one line in table 2 which records
‘male’ and ‘1,2,5’. The rest can be deduced accordingly. It
is easy to find that the storage space of inverted index
smaller than that of the original table because it does not
include the numerical value column.

Table 1. Fact Table
TID sex age specialty score

1 male 20 computer 90
2 male 20 computer 74
3 female 19 computer 83
4 female 20 computer 95
5 male 19 computer 81
6 female 20 computer 70

Table 2. First-order Inverted Index

Word TID
male 1,2,5

female 3,4,6
19 3,5
20 1,2,4,6

computer 1,2,3,4,5,6

Second-order and high-order inverted index can also

be built. Table 3 shows the second-order inverted index of
sex and age. The TID of male and 19 is 5, it tells that male
and 19 both appear in line 5. The advantage of inverted
index is fast keyword retrieval.

Table 3. Second-order Inverted Index
Word TID

male ,19 5
male ,20 1,2

female,19 3
female,20 4,6

JOURNAL OF SOFTWARE, VOL. 6, NO. 5, MAY 2011 859

© 2011 ACADEMY PUBLISHER

Table 2 can be translated into Table 4 by using bitmap,
which can further decrease the storage space and increase
the query efficiency.

Table 4. Bitmap-based Inverted Index
Word TID

male 110010

female 001101

19 001010

20 110101

computer 111111

B. Definitions
Definition 1 High-frequency Join
Queries which relate to the same dimensions are

classified into the same category. If the ratio of the
number of queries in the same category to the total
number of all queries is over HFJ, the category is called
high-frequency Join. HFJ is the threshold of high-
frequency which is between 0 and 1. The lower the HFJ is,
the more the high-frequency Join there are, which leads to
the large space occupation. The setup of HFJ depends on
the real cases.

Definition 2 Fact table can be formalized as Table
(Dimx1, Dimx2,…,Dimxn, M1,…,Mm). Aggregation
tables are derived from the original fact table, indicating to
AgTable (Dimx1, Dimx2,…,Dimxi, f(M1),…,f(Mm)).
Dimx1,Dimx2,…,Dimxi indicates the remaining
dimensions after the aggregation. f () is the aggregation
function. There are (n-i) dimensions in AgTable, that is
less than original fact table.

C. Approach Overview
The abstract of our approach is as follows: In

condition of the limited storage space, inverted index is
built for fact table in database while aggregation table is
established for frequently used queries, aggregation table
is applied for frequently used queries to get quick
response and inverted index is adopted for other queries to
reduce response time. So it improves the efficiency of
both frequently used queries and the other queries.

This paper establishes aggregation based on the
frequency of queries from users and adopts bitmap to
optimize inverted index. A solution is proposed for the
inefficient performance of bitmap when the number of
records becomes too large. The approach has the
advantages as quick response for frequently used queries,
performance promotion for other queries and reasonable
space cost.

D. Application of Our Approach
The establishing process of our approach can be

mainly divided into three steps: getting high-frequency
Joins; building inverted indexes; building aggregation
tables and join indexes. If better space performance is
required, then only the aggregation table for those high-
frequency joins meet the thresholdα will be built (α is
HFJ which has been introduced before). The function
ofα is to reduce the inconsequence of building too many
aggregation tables. For some high-frequency joins, the

number of involved dimensions is slightly smaller than the
total number, there is only tiny advancement by applying
aggregation table for them. So this kind of high-frequency
joins will be ignored while building aggregation tables.
Algorithm 1 Creating Index and AgTable
Input: Fact Table, Query Set
Output: Inverted Index, AgTable(Dimx1,Dimx2 …Dimxi
, f(M1),…,f(Mm))

begin
(1)Scan Query Set → Get High Frequency Dim and

High Frequency Join
(2)Scan Database → Create First-order Inverted

Index
IF space is surplus

For each High Frequency Dim
Create High-order Inverted Index（X≥2）

End
(3)For each High Frequency Join

 IF i<α *N
Create AgTable(Dimx1…Dimxi,

f(M1)…f(Mm))
Create join index for AgTable;
End

End
To apply this approach, first of all, make a judgment

whether the aggregation tables in database can be used.
Only if the aggregation table contains all the dimensions
of the query, it can be to promote the queries efficiency
(Reading join index to RAM and using join index to
rapidly create aggregation tables). If there is no
aggregation table can be used, we use inverted index
(containing the high-order inverted index) to get results. It
not only greatly promotes the efficiency of OLAP queries,
but also improves the performance of multi-keyword
queries.
Algorithm 2 Using index and AgTable
Input: Query Set
Output: Result
Begin
 Read join index and inverted index into RAM

For each Query
If dimensions are all in AgTable

 Select from AgTable
Else

Use Inverted Index (first-order or high-order) to
get address
 Select from hard disk (Fact table) use address

End
End

E. Analysis
Comparing to materialized view, our approach costs

less space. The added space is cost by aggregation tables
and inverted index, but bitmap greatly reduces the storage
space. In the algorithm above, it reduces the space cost by
restricting the ratio of joins’ dimensions to total
dimensions in aggregation tables belowα . So a theorem
can be derived when each attribute in different dimension
tables fits together in fact table.

860 JOURNAL OF SOFTWARE, VOL. 6, NO. 5, MAY 2011

© 2011 ACADEMY PUBLISHER

Theorem 1 The ratio of aggregation table to fact table
is getting smaller rapidly with the increase of rows of any
dimension table or the number of dimensions.

Theorem 2 Fact table and the structure of our
approach have the same the space complexity.

Time complexity analysis is as follows: When there is
no index, Cube queries of OLAP need to join the fact
table with dimension table to build a temporary view. A
summary query needs a traversal of the whole table, so the
time complexity is O (Mn). When our approach is
adopted, there are two situations:

(1)If the aggregation table can be used, it costs time to
search for aggregation and query on it. As there are join
index in RAM, it can quickly find out the aggregation, so
the time is mainly spent on the second step. Query by
using aggregation, the time complexity is O (Mn-i), ‘i’ is
(1-α)*n which stands for the difference of dimension
number of fact table and aggregation table. O (Mn-i) is
much smaller than O (Mn), the more the dimensions in the
dimension table are and the bigger the fact table is, the
more efficient our approach is.

(2) If no aggregation table can be used, then inverted
index can be adopted by OLAP query. The total time can
be divided into three parts: the time of reading out the
result id set from inverted index, the time of getting the
intersection of result id set, the time of querying on the
fact table with id. If inverted index is expressed by bitmap,
time for intersection can be omitted, so the total time
complexity is O (M*n). Otherwise, the intersection time
should be considered. In fact, the time for calculating is
much less than reading time. But for convenience, we
suppose they are in same level. If we use dichotomy to
sort one set, the time complexity is O (M㏒ M), so the
time for sorting all sets is O (nM ㏒ M). The time for
getting common elements on N ordered set is O (M*n). At
last the total time complexity is O (nM ㏒ M+ M*n),
equal to O (nM(1+㏒ M)). It is still much smaller than O
(Mn).

IV. BBI
The application of bitmap in expressing inverted index

decreases the space cost, as well as promotes the
efficiency, but there are two problems for using bitmap on
huge database. Firstly, every keyword needs a long bitmap
with the same length of the whole table. If there are many
records in a table, it is hard to store and use the bitmap.
Suppose there are 10000000 records in the table, however
one keyword needs 125000 bytes for bitmap, getting the
intersection of two 125000 bytes bitmap is also difficult.
Secondly, high-cardinality columns like time dimension
have many keywords and it is common that most
keywords appear rarely, so it wastes much space by using
bitmap inverted index to express each keyword. For the
above two problems, we made an improvement on our
approach. We use bitmap, b-tree and inverted index and
apply two different methods to high-cardinality columns
and low-cardinality columns, called BBI.

A. BBI index for low-cardinality columns
For low-cardinality columns’ keywords, the number is

not large and the frequency is high. For these columns we
use the BBI index structure as shown in Fig. 3. It divides
the fact table into some segments which still can be
divided into many blocks. Index blocks are established on
each table block by using inverted index and bitmap,
containing the initial and ending address of the block. One
bit of the bitmap refers to one row and stands for whether
a keyword appears in that row. After establishing all the
index blocks, it establishes index segment for the index
blocks. Index segments has the similar structure as index
block, but one bit of the bitmap refers to one block and
stands for whether a keyword appears in that block. It
establishes chief index on the total index segments and
also uses a bit to stand for whether a keyword appears in
that segment. BBI is an open index, using the same
method, it can build higher order index on the table, but
not only third order.

Such as Fig. 3, it establishes index block for each 256
rows, and builds index segment for each 64 index blocks;
at last built a chief index for 64 index segments.

Fig. 3. BBI index for low-cardinality columns

The main space cost is the storage space of index
blocks, because the space of index segments and chief
index is only a small portion of the index blocks’ . We can
see from Fig. 3 that establishing BBI for one column costs
the same space as building bitmap index of ORACLE.
Suppose there are N rows in the fact table, the total
number of keywords of all the low-cardinality columns is
M, K bytes bitmap is used for one keyword in each block,
so it comes that:

8
**

8
NMKM

K
NSpace ==

 (1)
It can be derived from (1) that the space of BBI is only

related to the number of rows and the number of
keywords. Suppose there are one million rows and one
thousand keywords, the space cost of BBI for all the
keywords is 125M. Compared to the space of table with
one million rows, it is much smaller.

B. BBI index for high-cardinality columns
For high-cardinality columns’ keywords, the number

is large but the frequency is low. For these columns we
use the BBI index structure like Fig. 2. It also divides the
fact table into many blocks. Index is established by using

JOURNAL OF SOFTWARE, VOL. 6, NO. 5, MAY 2011 861

© 2011 ACADEMY PUBLISHER

B-tree, inverted index and bitmap. Index is organized by
b-tree and the inverted indexes are stored in the leaf
nodes. According to the property of high-cardinality
columns, it will waste too much space to establish whole
inverted index for all the keywords in all the rows, so it
only stores the bitmap for the block in which the
keywords appear, containing the tab of block. All the leaf
nodes are linked by indicator for range query. Such as Fig.
4, there are 3000 keywords in one column, it only find out
the id of the keywords in dimension table. The keyword
’1’ exists in some rows of block 5 and block 121, so there
are two bitmaps in leaf node 1 for keyword ‘1’. Each leaf
node stores the bitmaps of 10 keywords at most, sorting
by ID.

Fig. 4. BBI index for high-cardinality columns

The main space cost is the storage space of index leaf

nodes. Suppose there are N rows in the fact table, the total
number of keywords of all the low-cardinality columns is
M, each keyword may appear in L blocks on average (it
means each keyword needs L rows of bitmap in the leaf
node on average), it uses K bytes for each row of bitmap,
so it comes that:

KLM **Space = (2)
It can be seen from (2) the space of BBI for high-

cardinality columns is related to size of one block, the
distribution of keywords and the number of keywords.
Suppose there are 100000 keywords, each keyword may
exist in 10 blocks on average and each bitmap is
expressed by 32 bytes, the space cost of BBI is 30M.

Two extreme conditions are considered. The first
condition is that every keyword exists in all blocks. It is
obvious that the space cost can be calculated by (1). The
second extreme condition is that for one column, the
keyword in each row is different from each other. So the
number of keywords is the same as row number. If the
row number is N and the dimension number is D, we can
derive that:

KDN **Space = (3)
Suppose there are one million rows and one hundred

high-cardinality columns with the second extreme
condition, it uses 32 bytes for one bitmap; the BBI space
cost of these a hundred million keywords is 3.2G.
Comparing to the space of table with one hundred high-
cardinality columns, it is much smaller.

V. PERFORMANCE EVALUATION
In this section the performance evaluation of BBI is

illustrated. In experiments, we used both real data and
simulated data to verify the space and time performance
with the variation of row number and dimension number.
The experiments are performed on fedora core 10.0 with
Inter(R) Core(TM)2 2.83G CPU and 2GB RAM, data is
stored on a local disk which is 7,200-rpm. The space of
simulated data is 1622.8M which contains 5 million rows
and 22 dimensions, including 11 high-cardinality columns
and 11 low-cardinality columns, it is randomly generated.
The real data set contains 7.79 million rows and 12
columns, and the space is 1080M.

A. IO performance of BBI
For retrieval speed, one of the most important

influences is I/O cost. On the one hand, if it is not
consecutively stored in physical address, the efficiency of
disk I/O will decline. On the other hand, it costs huge I/O
for querying on huge data, so using BBI to decrease I/O
cost can increase the retrieval efficiency.

Fig. 5 shows the change of I/O cost when establishing
BBI in stages. As the number of columns on which BBI
established grows, 100 queries are repeatedly executed on
the simulated data.

Fig.5. I/O Cost

In fact, if all the data is read into RAM at a time, it

doesn’t need disk I/O any more if the following queries
are executed on the same data. But it is hard to read all the
huge data to RAM, so only the essential data is read at a
time in the experiment, and released after query. When
there is no BBI, the I/O cost is close to 40000M. When
there are 4 columns with BBI, the I/O cost decreased to
24100M. When there were 20 columns with BBI, the I/O
cost is only 5400M.

B. Space size of aggregation table
We use the simulated data and simulated queries in

this experiment. We vary HFJ to see the change of high-
frequency join number. Fig. 6 shows change tendency of
ratio of high-frequency joins to all joins when HFJ ranges
from 1% to 5% and the columns number are 6,10,14,18,22
respectively. There are 10 high-frequency joins when
there are 22 columns and HFJ equals to 0.5%, but there
are only 3 when HFJ equals to 2%. No high-frequency
joins exist when HJF increases to 4%. It shows the

862 JOURNAL OF SOFTWARE, VOL. 6, NO. 5, MAY 2011

© 2011 ACADEMY PUBLISHER

common discipline by using simulated data and simulated
queries which are all randomly generated.

Fig. 7 shows the storage size of aggregation table,
α =2/3. The storage size of aggregation table decreases
rapidly with the increase of HFJ, but the tendency is not
regular. Through analysis we can see that high-cardinality
columns often affect more than low-cardinality columns,
because high-cardinality columns contain more keywords.
So if a high-cardinality column is deducted, the storage
size of aggregation will drastically decrease. In the
condition of 22 columns, when the HFJ increases from
1.5% to 2%, the number of high-frequency joins decreases
1, but the aggregation table size decreases 200M. At the
same time, when HFJ increases from 2.5% to 3.0%, the
number of high-frequency joins also decreases 1, but the
aggregation table size only decreases 7.1M.

Fig.6. Number of High-frequency Joins

Fig.7. Storage Size of Aggregation table

C. Performance of our approach
In this section, the overall test is illustrated. Our

approach has two functions, one is only to establish BBI
as common index, and apply it to promote the efficiency
for querying on huge data, the other is to use BBI and
aggregation table to promote the efficiency for OLAP
query. Based on real data, we first establish BBI, B-Tree
index, traditional bitmap index and compare their
efficiency for kinds of queries, then verify the OLAP
performance of our approach.

There are 7.79 million rows in the fact table. We
choose 6 low-cardinality columns to establish BBI, B-
Tree and traditional bitmap index, then 6 high-cardinality
columns. Fig.8 shows the comparison of space costs. First
two low-cardinality columns only have 9 keywords, both
storage size of BBI and traditional bitmap are 12M, but B-

Tree is over 100M. When two high- cardinality columns
are added, keyword number is over 31000, the traditional
bitmap already can not be built, its storage size is
predicted to be over 38000M. At this time, though BBI
also used bitmap, its size only increases to 550M. At last,
the number of all keywords is over 8.2 million, the
traditional bitmap is strongly unsuitable, but the storage
size of BBI and B-Tree are 767M and 593M, both of
which show the good space performance for huge number
of keywords. We can see that BBI has good space
performance no matter how many the columns are.

Fig.8. Comparison of Space Costs

Fig.9. Comparison of Query Performance

As proved above, BBI has good query performance.

Suppose there are three conditions, the queries involve
1,6,12 columns. We simulate queries for each condition.
Fig. 9 shows the comparison of query performance of BBI
and B-Tree. BBI always surpasses B-tree in the three
conditions especially when the columns increase. BBI
inherits the advantages of bitmap and b-tree, it could
easily answer reply the range query, multi keywords
query, ‘or’ query and etc.

At last, we verify the comprehensive performance
(containing cube query for OLAP) of our approach. We
establish the aggregation table on real data with the
condition thatα =2/3, HFJ=3%. For comparison, we also
use greedy algorithm to establish materialized views
which has the same space cost of our approach
(aggregation table and BBI). Fig.10 shows the comparison
of comprehensive performance. As cube queries increase,
it turns up that some queries could not use materialized
views and aggregation tables, but BBI is suitable for all
the queries which could use inverted index to established
data cube for OLAP (paper [17]).

JOURNAL OF SOFTWARE, VOL. 6, NO. 5, MAY 2011 863

© 2011 ACADEMY PUBLISHER

Fig.10. Comparison of Comprehensive performance

VI. CONCLUSIONS
A new approach is introduced in this paper, which can

be used to decrease the time cost for frequently used
queries, including cube queries. The core of the approach
is BBI which is an integrative index, inheriting the
advantage of bitmap index, b-tree index and inverted
index. Inverted index represented by bitmap is adopted to
get result quickly by intersection operations. Meanwhile,
tree structure is used to accelerate speed for range queries.
BBI can be built on both high-cardinality and low-
cardinality columns and it is suitable to all data types. BBI
established on different columns can cooperate with each
other to promote the efficiency. Combining with
aggregation which is based on user-driven, the approach
can promote the efficiency for of cube queries as well. It
does not only greatly promote the efficiency of frequently
used queries, but also improve the performance of other
queries. This paper discusses the space and time
complexity of BBI, and the experiment results show good
performance on space and time of this approach. Future
work is planned to be focused on live update strategy.

ACKNOWLEDGMENT
This work was supported by the National Natural

Science Foundation of China under Grant NO. 70871033
and the National High-Tech Research and Development
Plan of China under Grant NO. 2007AA04Z116.

REFERENCES
[1] Joshi.S, Jermaine.C, “Materialized Sample Views for

Database,” [J] IEEE Transactions on Knowledge and Data
Engineering, Volume 20, Issue 3, pp: 337 – 351, March
2008

[2] Guangrong.Li, Xiaohua.Hu and etc, “A Novel
Unsupervised Feature Selection Method for Bioinformatics
Data Sets through Feature Clustering” Proc. Granular
Computing, 2008. IEEE International Conference on 26-28
Aug. 2008(GrC 2008.), pp: 41 - 47

[3] Dimension-Join: A New Index for Data Warehouses
http://www4.wiwiss.fu-berlin.de/dblp/resource/record/
conf/sbbd/BizarroM01

[4] M.E Morita, R. Sabourin, F. Bortolozzi, and C.Y. Suen,
“Unsupervised Feature Selection Using Multi-Objective
Genetic Algorithm for Handwritten Word Recognition”, in
the 7th International Conference on Document Analysis
and Recognition, Edinburgh, Scotland, 2003, pp.666-670.

[5] Gibas.M, Canahuate.G, Ferhatosmanoglu.H, “On row
Index Recommendations for High-Dimensional Databases
Using Query Workloads” IEEE Transactions on
Knowledge and Data Engineering, Volume 20, Issue
2, Feb. 2008 Page(s):246 - 260

[6] P·O’Neil, D·Quass. Improved query performance with
variant indexes [EB/OL]. http://www.cs.duke.edu/~
junyang /courses/cps216-2003-spring/papers/oneil-quass-
1997.pdf,1997-05.

[7] Jingren.Zho, Larson.P.A, Goldstein.J, Luping.Ding,
“Dynamic Materialized Views”, Data Engineering, 2007.
ICDE 2007. IEEE 23rd International Conference on 15-20
April 2007 Page(s):526 - 535

[8] Yin.GS ,Yu.X, Lin.LD, ” Strategy of Selecting
Materialized Views Based on Cache updating”, IEEE
International Conference on Integration Technology
Shenzhen, CHINA, MAR 20-24, 2007 pp:789-792

[9] Jeffrey.Xu.Yu, Xin.Yao, ChiHon.Choi, Gang.Gou.
“Materialized View Selection as Constrained Evolutionary
Optimization”, IEEE Transactions on Systems, Man, and
Cybernetics, Part C: Applications and Reviews, Volume
33, Issue 4, Nov. 2003 Page(s):458 - 467

[10] H. Gupta and I. S. Mumick, “Selection of views to
materialize under a maintenance cost constraint,” in Proc.
7th Int. Conf. Database Theory,1999, pp. 453–470.

[11] A. Shukla, P. Deshpande, and J. F. Naughton,
Materialized view selection for multidimensional
datasets,in Proc. 24th Int. Conf. Very Large Data Bases,
1998, pp. 488–499.

[12] Byeong-Seob You, Dong-Wook Lee, et al. Hybrid Index
for Spatio-temporal OLAP Operations[A] //International
Conference on Advances in Information
Systems(ADVIS 2006). Germany:Springer,2006:110-118.

[13] Wen Juan, Xue Yongshen, et al. An Efficient Method for
Multi-Table Joining in Data Warehouse[J]. Journal of
Computer Research and Development, 2005, 44(11):
2010~2017(in Chinese).

[14] M. Frank, E. Omiecinski, and S. Navathe, “Adaptive and
Automated Index Selection in RDBMS,” Proc. Third Int’l
Conf. Extending Database Technology (EDBT ’92), 1992.

[15] S. Choenni, H. Blanken, and T. Chang, “On the Selection
of Secondary Indexes in Relational Databases,” Data and
Knowledge Eng., 1993.

[16] A. Capara, M. Fischetti, and D. Maio, “Exact and
Approximate Algorithms for the Index Selection Problem
in Physical Database Design”, Knowledge and Data
Engineering, IEEE Transactions on Volume 7, Issue
6, Dec. 1995 Page(s):955 - 967

[17] Xiaolei Li, Jiawei Han, Hector Gonzalez.High-
dimensional OLAP:a minimal cubing approach[A].
NASCIMENTO M A,OZSU M T,KOSSMANN D,et al.
International Conference on Very Large Data Bases(VLDB
2004).San Fransisco:Morgan Kaufmann,2004:528-539.

[18] Yan.Jun; Liu, Ning; Yan, Shuicheng; Yang, Qiang; Chen,
Zheng;, “Synthesizing Novel Dimension Reduction
Algorithms in Matrix Trace Oriented Optimization
Framework”, Data Mining, 2009. ICDM '09. Ninth IEEE
International Conference on 6-9 Dec. 2009 Page(s):598 -
606

[19] Smalter.A, Huan.Jun, Lushington.G, “Feature Selection in
the Tensor Product Feature Space”, in the ICDM '09. 2009
Page(s):1004-1009.

864 JOURNAL OF SOFTWARE, VOL. 6, NO. 5, MAY 2011

© 2011 ACADEMY PUBLISHER

Zhiwei Ni (Tongcheng City, Anhui
Province,1963), Professor, Doctoral
supervisor.

He received his master degree from the
Department of Computer Science and
Engineering, Anhui University, Hefei,
China, 1991 and a PhD degree from the
Department of Computer Science and

Technology, Hefei, China, in 2002, all in computer science.
He is currently a full Professor in the School of Management

and also the Director for the Institute of Intelligent Management
in Hefei University of Technology, Hefei, China. His major
research interests include Artificial Intelligence, Machine
Learning, Intelligent Management and Intelligent Decision
Technique.

Junfeng Guo (Hefei City, Anhui Province, 1983), graduate

student. He focuses on the research of business intelligence,
data warehouse and OLAP (online analytical processing).

Li Wang (Fuyang City, Anhui Province, 1982), PhD student.

His research field includes business intelligence, data mining
and cloud computing.

Yazhuo Gao (Zibo City, Shandong Province, 1984), PhD

student. Her research field includes business intelligence, data
mining and OLAP.

JOURNAL OF SOFTWARE, VOL. 6, NO. 5, MAY 2011 865

© 2011 ACADEMY PUBLISHER

