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Abstract—There are lots of performance bottlenecks for 
real-time queries in mass data. Many methods can only 
improve the efficiency for frequently used queries, but it is 
not advisable to neglect the non-frequently used queries. 
This paper proposes a new integrated index model called 
BBI and illustrates the application of this model. Based on 
the feature of data warehouse and OLAP queries, this index 
model is built with inverted index, aggregation table, bitmap 
index and b-tree. It greatly promotes not only the efficiency 
of frequently used queries, but also the performance of 
other queries. The analytical and experimental results 
demonstrate the utility of BBI. 

Index Terms—Aggregation Table, Inverted Index, Bitmap 
Index, B-Tree Index 

I. INTRODUCTION  
Data warehouse (DW) is defined as a subject-oriented, 

integrated, steady and time varying data set which 
supports enterprises or organizations to make decisions. 
As the decision maker needs to query several values from 
one subject for real-time analysis processing, the 
multidimensional model of DW is usually implemented as 
star schemes to meet the requirements. This kind of 
hierarchical model is highly unnormalized and query-
oriented. There are two kinds of table in star schemes. 
One is fact table which contains basic quantitative 
measurements of a business subject, the other is 
dimension table that describes the facts. If there are more 
than one fact table in a DW, it can be called galaxy model 
which is actually constituted of several star schemes. 

Complex queries are always requested in DW. When 
users need to process multi-dimensional analysis, multi-
table joins may be involved. Although data can be stored 
in a multi-dimensional database, DW usually stores data 
in the form of relational database. As the number of 
dimension and the overall size of data sets increase, the 
size of DW often grows to gigabytes or terabytes. When 
the complex queries are implemented on mass multi-
dimensional data， the query efficiency is far beyond 
satisfaction. Fact tables in data warehouses which store 
business measures usually have millions of records or 

more. Such tables usually have more than 10 attribute 
dimensions. For example, to select records of which time 
between 01/01/2008 and 09/10/2009, it needs to join the 
tables and compare the time value of millions of each 
record with the requested value. So it is necessary to 
retrieve the data more efficiently. Some methods and 
technologies were proposed to improve queries efficiency, 
such as materialized view[1], feature selection[5], index 
technology[3], etc. 

Materialized view is a kind of pre-computed structure, 
it materializes the calculated results ahead of using. The 
pre-computed values are often mean, sum, average, etc. 
Queries on materialized views are fast responded, because 
no join needs to be made on successive requests, and the 
records in views are less than the original tables. 
Materialized views can be applied to OLAP, but due to the 
limit of storage space, it is infeasible to store results of all 
queries. Some heuristic algorithms have been used to find 
an approximate optimal solution. For example, greedy and 
genetic algorithms that based on requirement and 
probability are applied to generate views. But once queries 
are made on the records which are not materialized, the 
efficiency can not be improved, and it is unacceptable for 
any delay when users need the results urgently. So there is 
limitation of materialized method. 

 Feature selection is a procedure to select a subset 
from the original feature set by eliminating redundancy 
and less informative features so that the subset contains 
only the most discriminative features [4]. Applied to 
dimension reduction, a set of attributes that best represents 
the overall data set is found out by feature selection. But 
feature selection has the same problem with materialized 
view that when the queries involve the dimensions which 
are not selected, the efficiency of this method deceases. 

    Index technology greatly cuts down the load of I/O, 
which is highly effective in real application. Compared 
with materialized view, the space cost of index is reduced. 
Many indexes are classified into data-partitioning indexes, 
such as B+ tree and R-tree family and other tree indexes. 
B+ tree indexes are often adopted in databases to retrieve 
rows of a table with specified values involving one or 
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more columns. Data are placed in some partitions by the 
sequence of key values which also need to be pre-
computed. Using these indexes to answer a query, system 
should find the partitions which contain the related data by 
comparing the key value from the root node to the leaf 
nodes. Those all search paths that may be potentially 
matched must be explored. Data-partitioning indexes are 
effective for single keyword queries. As the dimension 
quantity of both the indexes and the queries increases, the 
efficiency deceases. 

OLAP query includes point query and cube query. It 
takes less time to process point query whose result is a 
single value or one record. Cube query returns a list of 
values or multiple rows of data which are aggregated from 
the data set. It needs to traversal the whole data table to 
get the data set and is relatively long in the duration of 
query implementation. For example, if we need the total 
revenue which is sorted only by time and location, it is a 
cube query that needs to traversal the whole sale fact table 
to aggregate the data. As for OLAP query，the common 
index technology can not meet the requirements of query 
efficiency. Data cube plays an essential role in fast OLAP 
query, but high dimensional data cube requires massive 
memory and disk space, and the current algorithms are 
unable to materialize the full cube under such conditions. 
It is called curse of dimensionality. Besides, it is hard to 
build data cubes based on relational databases, so how to 
promote the query efficiency becomes the key problem. 
As for OLAP application，paper [17] used inverted index 
which is common technology of search engine to build 
shell cube. Though the new cubing approach reduces the 
space cost of data cube and promotes the efficiency of 
queries, many queries require to be computed at run time.  

Introducing inverted-index in search engine 
technology, integrating join-index and materialized view, 
we propose a new index model in this paper based on user 
interest and query statistics, called BBI. The new index 
can not only greatly promote the efficiency of frequently 
used queries, but also improve the performance of other 
queries. With a good performance in storage size, it is 
suitable to be applied in OLAP and other complex queries.  

In Section 2, the relevant knowledge of existing 
approaches and technology are presented; our approach is 
elaborated and the efficiency of the theory is analyzed in 
Section 3. BBI is further discussed in Section 4. Section 5 
describes the performance evaluation of our approach. 
Section 6 is the conclusion.  

II. RELATED WORK 
There are some feasible methods with acceptable 

performance for the queries that require multi-table joins 
in high dimension data warehouses when the queries are 
based on the dimensions that are important or commonly 
used, but not all dimensions can be included with most 
methods while the space expense grows rapidly as the 
dimension grows. The common technologies are view 
materialization, feature selection, index technology, etc., 
they are not independent with each other, and many 
researches concentrate on integrating various technologies 
to improve the efficiency of DW.  

A.  Materialized View 
Dynamic materialized view [7] selectively materializes 

only a subset of rows which are the most frequently 
accessed. Compared to conventional materialized view 
which maintains all rows of a view, the set of dynamic 
materialized views can be changed dynamically and the 
storage space is reduced. A method in [8] materializes the 
views in a data warehouse to reduce the query response 
time. Aiming at the insufficient consideration of the 
dynamic update, the method can wash out materialized 
views and add new materialized views in the set of current 
materialized views on the basis of the greedy algorithm. 
Paper [9] proposes a constrained evolutionary algorithm 
for materialized views. Constraints are incorporated into 
the algorithm through a stochastic ranking procedure [18]. 
The basic principle of this technology has been well 
described in [10] and [11]. But [7], [8], [9], [10], [11] all 
avoid the question of generality.  

An algorithm is presented in [1] for building 
materialized sample views for database approximation. 
The core technique is called ACE (Appendability, 
Combinability, and Exponentiality) Tree, improved from 
B+-tree, that is suitable for organizing and indexing a 
sample view, but the algorithm is not useful when 
integrated views are needed. 

B.  Feature selection 
Feature selection techniques are targeted at finding a 

set of attributes that best represent the overall data. [2], [4] 
and [19] are traditional techniques of feature selection 
which focus on maximizing data energy or classification 
accuracy for dimension reduction [19]. The algorithm in 
[4] groups the features into different clusters based on 
feature similarity and selects a representative feature from 
each cluster, so that the feature redundancy is reduced. As 
a result, selected features may have no overlap with 
queried attributes. In this case, to neglect any attribute 
may bring troubles when queries are based on the 
attributes that have not been selected. 

C. Index 
Patrick O’Neil and Dallan Quass presented a review of 

indexing technology in Paper [6] which included join 
index, bitmap index and B+-tree. Two indexing structures 
called Bit-Sliced indexes and Projection indexes were 
introduced as well. The core of the method was the 
combination of B+-tree and bitmap index, which was not 
complex but effective. 

At present, B+-tree and bitmap index are two of the 
most important indexes in most database software. In fact, 
the new edition of ORACLE database has involved the 
improved indexing technology. The key indexes of 
ORACLE are shown in Fig. 1 and Fig. 2. Fig. 1 shows the 
application of B-tree index. Based on the rules of B-tree, 
relational table is divided by a numerical attribute, all 
rows of the table are distributed in the leaf nodes of a tree. 
In leaf nodes, the values of indexed attribute are 
considered as labels. Each label corresponds to a value 
called ‘rowid’ which is used to uniquely identify one row 
of data in ORACLE database and can be seen as physical 
addresses. Leaf nodes are connected by indicator so that it 
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is convenient to use range query. When queries are made 
on keywords, it is rapidly to find the ‘rowid’ in leaf nodes 
by b-tree rule and localize the rows of data in database by 
‘rowid’. B-tree index in ORACLE is suitable for high-
cardinality columns and it is inexpensive to update on 
keys relatively. But it is inefficient for queries using ‘or’ 
predicates. 

 

Fig. 1. B-tree index in ORACLE 

Fig. 1. shows the structure of bitmap index which is 
built for gender in ORACLE. The word ‘start’ and ’end’ 
represent a segment of storage space. The ‘rowid’ of 
‘8.0.1’ is the beginning address and ’12.0.1’ is end. 
Bitmap shows the distributing of all the gender keywords. 
‘1’ means the keyword appears in the row, ‘0’ means the 
contrary. Bitmap index in ORACLE is suitable for low-
cardinality columns and it is efficient for queries using OR 
predicates. But it is expensive to update key column. At 
the same time, each keyword needs a bitmap whose length 
is the same as the fact table. When the row number is 
large, it is difficult to use and store bitmap. ORACLE 
often uses the subsection structures to solve this problem 
which also shows in Fig. 2,but as the number of segment 
increases, performance decreases quickly, because it 
needs to checkall the bitmap segments to find answer. 

  
Fig. 2. Bitmap index in ORACLE 

Several papers proposed designs for index 
recommendations based on optimization rules [14], [15], 
[16].Since the effectiveness of these indexes degrades 
when the query patterns change, Michael Gibas and his 
collaborators [5] introduced a technique to recommend 
indexes based on index types that were frequently used for 
high-dimensional data sets and to dynamically adjust 
indexes as the underlying query workload changes. 

Paper [3] evaluated experimentally the dimension-join 
indexes using the TPC-H benchmark and showed a new 
index structure using bitmap and B+ tree that can 
dramatically improve the performance for some queries. 

Papers [12] proposed Hybrid Index which is suitable for 
given data by building with B+ tree and hash table, but it 
is not universality. Paper [13] introduced a new kind of 
multi-table join index and proved it was more effective 
than only using multi-table join by experiment. But this 
technique also only has the index on the frequently using 
data to advance the query performance; it upgrades 
nothing when queries are made on the data which has not 
been paid attention. 

III.   APPROACH 

A. Inverted Index  
Inverted index comes from the functional needs of 

attribute retrieval in practice. Each item in the index table 
has an attribute value and an ID which corresponds to the 
value. Inverted index tables identify ID by attribute, which 
is different from the common tables that identify attribute 
by ID, that is why it is called inverted index. Table 1 is a 
fact table which has three dimension columns and one 
numerical value column. Table 2 is the first order inverted 
index of table 1. The keyword ‘male’ appears in line 1, 2, 
5 in table 1; so there is one line in table 2 which records 
‘male’ and ‘1,2,5’. The rest can be deduced accordingly. It 
is easy to find that the storage space of inverted index 
smaller than that of the original table because it does not 
include the numerical value column. 

Table 1. Fact Table 
TID sex age specialty score 

1 male 20 computer 90 
2 male 20 computer 74 
3 female 19 computer 83 
4 female 20 computer 95 
5 male 19 computer 81 
6 female 20 computer 70 

 
Table 2. First-order Inverted Index 

Word TID 
male 1,2,5 

female 3,4,6 
19 3,5 
20 1,2,4,6 

computer 1,2,3,4,5,6 
 
Second-order and high-order inverted index can also 

be built. Table 3 shows the second-order inverted index of 
sex and age. The TID of male and 19 is 5, it tells that male 
and 19 both appear in line 5. The advantage of inverted 
index is fast keyword retrieval.  

Table 3. Second-order Inverted Index 
Word TID 

male ,19 5 
male ,20 1,2 

female,19 3 
female,20 4,6 
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Table 2 can be translated into Table 4 by using bitmap, 
which can further decrease the storage space and increase 
the query efficiency. 

Table 4. Bitmap-based Inverted Index 
Word TID 

male 110010 

female 001101 

19 001010 

20 110101 

computer 111111 

B. Definitions  
Definition  1 High-frequency Join 
Queries which relate to the same dimensions are 

classified into the same category. If the ratio of the 
number of queries in the same category to the total 
number of all queries is over HFJ, the category is called 
high-frequency Join. HFJ is the threshold of high-
frequency which is between 0 and 1. The lower the HFJ is, 
the more the high-frequency Join there are, which leads to 
the large space occupation. The setup of HFJ depends on 
the real cases. 

Definition 2 Fact table can be formalized as Table 
(Dimx1, Dimx2,…,Dimxn, M1,…,Mm). Aggregation 
tables are derived from the original fact table, indicating to 
AgTable (Dimx1, Dimx2,…,Dimxi, f(M1),…,f(Mm)). 
Dimx1,Dimx2,…,Dimxi indicates the remaining 
dimensions after the aggregation. f ( ) is the aggregation 
function. There are (n-i) dimensions in AgTable, that is 
less than original fact table.  

C. Approach Overview 
The abstract of our approach is as follows: In 

condition of the limited storage space, inverted index is 
built for fact table in database while aggregation table is 
established for frequently used queries, aggregation table 
is applied for frequently used queries to get quick 
response and inverted index is adopted for other queries to 
reduce response time. So it improves the efficiency of 
both frequently used queries and the other queries. 

This paper establishes aggregation based on the 
frequency of queries from users and adopts bitmap to 
optimize inverted index. A solution is proposed for the 
inefficient performance of bitmap when the number of 
records becomes too large. The approach has the 
advantages as quick response for frequently used queries, 
performance promotion for other queries and reasonable 
space cost. 

D. Application of Our Approach  
The establishing process of our approach can be 

mainly divided into three steps: getting high-frequency 
Joins; building inverted indexes; building aggregation 
tables and join indexes. If better space performance is 
required, then only the aggregation table for those high-
frequency joins meet the thresholdα will be built (α is 
HFJ which has been introduced before). The function 
ofα is to reduce the inconsequence of building too many 
aggregation tables. For some high-frequency joins, the 

number of involved dimensions is slightly smaller than the 
total number, there is only tiny advancement by applying 
aggregation table for them. So this kind of high-frequency 
joins will be ignored while building aggregation tables.  
Algorithm 1 Creating Index and AgTable 
Input: Fact Table, Query Set 
Output: Inverted Index, AgTable(Dimx1,Dimx2 …Dimxi 
, f(M1),…,f(Mm)) 

begin 
(1)Scan Query Set → Get High Frequency Dim and 

High Frequency Join 
(2)Scan Database → Create First-order Inverted 

Index  
IF space is surplus 

For each High Frequency Dim   
Create High-order Inverted Index（X≥2） 

End 
(3)For each High Frequency Join  

              IF i<α *N  
Create AgTable(Dimx1…Dimxi, 

f(M1)…f(Mm))    
Create join index for AgTable;     
End 

End  
To apply this approach, first of all, make a judgment 

whether the aggregation tables in database can be used. 
Only if the aggregation table contains all the dimensions 
of the query, it can be to promote the queries efficiency 
(Reading join index to RAM and using join index to 
rapidly create aggregation tables). If there is no 
aggregation table can be used, we use inverted index 
(containing the high-order inverted index) to get results. It 
not only greatly promotes the efficiency of OLAP queries, 
but also improves the performance of multi-keyword 
queries.  
Algorithm 2 Using index and AgTable 
Input: Query Set 
Output: Result 
Begin 
     Read join index and inverted index into RAM  

For each Query 
If   dimensions are all in AgTable 

              Select from AgTable  
Else  

Use Inverted Index (first-order or high-order) to 
get address 
            Select from hard disk (Fact table) use address 

End 
End   

E. Analysis  
Comparing to materialized view, our approach costs 

less space. The added space is cost by aggregation tables 
and inverted index, but bitmap greatly reduces the storage 
space. In the algorithm above, it reduces the space cost by 
restricting the ratio of joins’ dimensions to total 
dimensions in aggregation tables belowα . So a theorem 
can be derived when each attribute in different dimension 
tables fits together in fact  table. 
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Theorem 1 The ratio of aggregation table to fact table 
is getting smaller rapidly with the increase of rows of any 
dimension table or the number of dimensions.  

Theorem 2 Fact table and the structure of our 
approach  have  the same the space complexity. 

Time complexity analysis is as follows: When there is 
no index, Cube queries of OLAP need to join the fact 
table with dimension table to build a temporary view. A 
summary query needs a traversal of the whole table, so the 
time complexity is O (Mn). When our approach is 
adopted, there are two situations: 

(1)If the aggregation table can be used, it costs time to 
search for aggregation and query on it. As there are join 
index in RAM, it can quickly find out the aggregation, so 
the time is mainly spent on the second step. Query by 
using aggregation, the time complexity is O (Mn-i), ‘i’ is 
(1-α )*n which stands for the difference of dimension 
number of fact table and aggregation table. O (Mn-i) is 
much smaller than O (Mn), the more the dimensions in the 
dimension table are and the bigger the fact table is, the 
more efficient our approach is.  

(2) If no aggregation table can be used, then inverted 
index can be adopted by OLAP query. The total time can 
be divided into three parts: the time of reading out the 
result id set from inverted index, the time of getting the 
intersection of result id set, the time of querying on the 
fact table with id. If inverted index is expressed by bitmap, 
time for intersection can be omitted, so the total time 
complexity is O (M*n). Otherwise, the intersection time 
should be considered. In fact, the time for calculating is 
much less than reading time. But for convenience, we 
suppose they are in same level. If we use dichotomy to 
sort one set, the time complexity is O (M㏒ M), so the 
time for sorting all sets is O (nM ㏒ M). The time for 
getting common elements on N ordered set is O (M*n). At 
last the total time complexity is O (nM ㏒ M+ M*n), 
equal to O (nM(1+㏒ M)). It is still much smaller than O 
(Mn). 

IV. BBI 
The application of bitmap in expressing inverted index 

decreases the space cost, as well as promotes the 
efficiency, but there are two problems for using bitmap on 
huge database. Firstly, every keyword needs a long bitmap 
with the same length of the whole table. If there are many 
records in a table, it is hard to store and use the bitmap. 
Suppose there are 10000000 records in the table, however 
one keyword needs 125000 bytes for bitmap, getting the 
intersection of two 125000 bytes bitmap is also difficult. 
Secondly, high-cardinality columns like time dimension 
have many keywords and it is common that most 
keywords appear rarely, so it wastes much space by using 
bitmap inverted index to express each keyword. For the 
above two problems, we made an improvement on our 
approach. We use bitmap, b-tree and inverted index and 
apply two different methods to high-cardinality columns 
and low-cardinality columns, called BBI.  

A. BBI index for low-cardinality columns  
For low-cardinality columns’ keywords, the number is 

not large and the frequency is high. For these columns we 
use the BBI index structure as shown in Fig. 3. It divides 
the fact table into some segments which still can be 
divided into many blocks. Index blocks are established on 
each table block by using inverted index and bitmap, 
containing the initial and ending address of the block. One 
bit of the bitmap refers to one row and stands for whether 
a keyword appears in that row. After establishing all the 
index blocks, it establishes index segment for the index 
blocks. Index segments has the similar structure as index 
block, but one bit of the bitmap refers to one block and 
stands for whether a keyword appears in that block. It 
establishes chief index on the total index segments and 
also uses a bit to stand for whether a keyword appears in 
that segment. BBI is an open index, using the same 
method, it can build higher order index on the table, but 
not only third order. 

Such as Fig. 3, it establishes index block for each 256 
rows, and builds index segment for each 64 index blocks; 
at last built a chief index for 64 index segments.  

 

 
Fig. 3. BBI index for low-cardinality columns 

The main space cost is the storage space of index 
blocks, because the space of index segments and chief 
index is only a small portion of the index blocks’ . We can 
see from Fig. 3 that establishing BBI for one column costs 
the same space as building bitmap index of ORACLE. 
Suppose there are N rows in the fact table, the total 
number of keywords of all the low-cardinality columns is 
M, K bytes bitmap is used for one keyword in each block, 
so it comes that: 

8
**

8
NMKM

K
NSpace ==

                                   (1) 
It can be derived from (1) that the space of BBI is only 

related to the number of rows and the number of 
keywords. Suppose there are one million rows and one 
thousand keywords, the space cost of BBI for all the 
keywords is 125M. Compared to the space of table with 
one million rows, it is much smaller. 

B. BBI index for high-cardinality columns  
For high-cardinality columns’ keywords, the number 

is large but the frequency is low. For these columns we 
use the BBI index structure like Fig. 2. It also divides the 
fact table into many blocks. Index is established by using 
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B-tree, inverted index and bitmap. Index is organized by 
b-tree and the inverted indexes are stored in the leaf 
nodes. According to the property of high-cardinality 
columns, it will waste too much space to establish whole 
inverted index for all the keywords in all the rows, so it 
only stores the bitmap for the block in which the 
keywords appear, containing the tab of block. All the leaf 
nodes are linked by indicator for range query. Such as Fig. 
4, there are 3000 keywords in one column, it only find out 
the id of the keywords in dimension table. The keyword 
’1’ exists in some rows of block 5 and block 121, so there 
are two bitmaps in leaf node 1 for keyword ‘1’. Each leaf 
node stores the bitmaps of 10 keywords at most, sorting 
by ID. 

Fig. 4. BBI index for high-cardinality columns 
 
The main space cost is the storage space of index leaf 

nodes. Suppose there are N rows in the fact table, the total 
number of keywords of all the low-cardinality columns is 
M, each keyword may appear in L blocks on average (it 
means each keyword needs L rows of bitmap in the leaf 
node on average), it uses K bytes for each row of bitmap, 
so it comes that: 

KLM **Space =                                              (2) 
It can be seen from (2) the space of BBI for high-

cardinality columns is related to size of one block, the 
distribution of keywords and the number of keywords. 
Suppose there are 100000 keywords, each keyword may 
exist in 10 blocks on average and each bitmap is 
expressed by 32 bytes, the space cost of BBI is 30M. 

Two extreme conditions are considered. The first 
condition is that every keyword exists in all blocks. It is 
obvious that the space cost can be calculated by (1). The 
second extreme condition is that for one column, the 
keyword in each row is different from each other. So the 
number of keywords is the same as row number. If the 
row number is N and the dimension number is D, we can 
derive that: 

KDN **Space =                                          (3) 
Suppose there are one million rows and one hundred 

high-cardinality columns with the second extreme 
condition, it uses 32 bytes for one bitmap; the BBI space 
cost of these a hundred million keywords is 3.2G. 
Comparing to the space of table with one hundred high-
cardinality columns, it is much smaller.        

 

V. PERFORMANCE EVALUATION 
In this section the performance evaluation of BBI is 

illustrated. In experiments, we used both real data and 
simulated data to verify the space and time performance 
with the variation of row number and dimension number. 
The experiments are performed on fedora core 10.0 with 
Inter(R) Core(TM)2 2.83G CPU and 2GB RAM, data is 
stored on a local disk which is 7,200-rpm. The space of 
simulated data is 1622.8M which contains 5 million rows 
and 22 dimensions, including 11 high-cardinality columns 
and 11 low-cardinality columns, it is randomly generated. 
The real data set contains 7.79 million rows and 12 
columns, and the space is 1080M. 

A. IO performance of BBI  
For retrieval speed, one of the most important 

influences is I/O cost. On the one hand, if it is not 
consecutively stored in physical address, the efficiency of 
disk I/O will decline. On the other hand, it costs huge I/O 
for querying on huge data, so using BBI to decrease I/O 
cost can increase the retrieval efficiency.  

Fig. 5 shows the change of I/O cost when establishing 
BBI in stages. As the number of columns on which BBI 
established grows, 100 queries are repeatedly executed on 
the simulated data. 

 
Fig.5. I/O Cost 

 
In fact, if all the data is read into RAM at a time, it 

doesn’t need disk I/O any more if the following queries 
are executed on the same data. But it is hard to read all the 
huge data to RAM, so only the essential data is read at a 
time in the experiment, and released after query. When 
there is no BBI, the I/O cost is close to 40000M. When 
there are 4 columns with BBI, the I/O cost decreased to 
24100M. When there were 20 columns with BBI, the I/O 
cost is only 5400M.  

B. Space size of aggregation table 
We use the simulated data and simulated queries in 

this experiment. We vary HFJ to see the change of high-
frequency join number. Fig. 6 shows change tendency of 
ratio of high-frequency joins to all joins when HFJ ranges 
from 1% to 5% and the columns number are 6,10,14,18,22 
respectively. There are 10 high-frequency joins when 
there are 22 columns and HFJ equals to 0.5%, but there 
are only 3 when HFJ equals to 2%. No high-frequency 
joins exist when HJF increases to 4%. It shows the 
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common discipline by using simulated data and simulated 
queries which are all randomly generated. 

Fig. 7 shows the storage size of aggregation table, 
α =2/3. The storage size of aggregation table decreases 
rapidly with the increase of HFJ, but the tendency is not 
regular. Through analysis we can see that high-cardinality 
columns often affect more than low-cardinality columns, 
because high-cardinality columns contain more keywords. 
So if a high-cardinality column is deducted, the storage 
size of aggregation will drastically decrease. In the 
condition of 22 columns, when the HFJ increases from 
1.5% to 2%, the number of high-frequency joins decreases 
1, but the aggregation table size decreases 200M. At the 
same time, when HFJ increases from 2.5% to 3.0%, the 
number of high-frequency joins also decreases 1, but the 
aggregation table size only decreases 7.1M. 

 
Fig.6. Number of High-frequency Joins 

 

 
Fig.7. Storage Size of Aggregation table 

C. Performance of our approach  
In this section, the overall test is illustrated. Our 

approach has two functions, one is only to establish BBI 
as common index, and apply it to promote the efficiency 
for querying on huge data, the other is to use BBI and 
aggregation table to promote the efficiency for OLAP 
query. Based on real data, we first establish BBI, B-Tree 
index, traditional bitmap index and compare their 
efficiency for kinds of queries, then verify the OLAP 
performance of our approach.  

There are 7.79 million rows in the fact table. We 
choose 6 low-cardinality columns to establish BBI, B-
Tree and traditional bitmap index, then 6 high-cardinality 
columns. Fig.8 shows the comparison of space costs. First 
two low-cardinality columns only have 9 keywords, both 
storage size of BBI and traditional bitmap are 12M, but B-

Tree is over 100M. When two high- cardinality columns 
are added, keyword number is over 31000, the traditional 
bitmap already can not be built, its storage size is 
predicted to be over 38000M. At this time, though BBI 
also used bitmap, its size only increases to 550M. At last, 
the number of all keywords is over 8.2 million, the 
traditional bitmap is strongly unsuitable, but the storage 
size of BBI and B-Tree are 767M and 593M, both of 
which show the good space performance for huge number 
of keywords. We can see that BBI has good space 
performance no matter how many the columns are.  

 
Fig.8. Comparison of Space Costs 

 
Fig.9. Comparison of Query Performance 

 
As proved above, BBI has good query performance. 

Suppose there are three conditions, the queries involve 
1,6,12 columns. We simulate queries for each condition. 
Fig. 9 shows the comparison of query performance of BBI 
and B-Tree. BBI always surpasses B-tree in the three 
conditions especially when the columns increase. BBI 
inherits the advantages of bitmap and b-tree, it could 
easily answer reply the range query, multi keywords 
query, ‘or’ query and etc.  

At last, we verify the comprehensive performance 
(containing cube query for OLAP) of our approach. We 
establish the aggregation table on real data with the 
condition thatα =2/3, HFJ=3%. For comparison, we also 
use greedy algorithm to establish materialized views 
which has the same space cost of our approach 
(aggregation table and BBI). Fig.10 shows the comparison 
of comprehensive performance. As cube queries increase, 
it turns up that some queries could not use materialized 
views and aggregation tables, but BBI is suitable for all 
the queries which could use inverted index to established 
data cube for OLAP (paper [17]). 
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Fig.10. Comparison of Comprehensive performance 

 

VI. CONCLUSIONS 
A new approach is introduced in this paper, which can 

be used to decrease the time cost for frequently used 
queries, including cube queries. The core of the approach 
is BBI which is an integrative index, inheriting the 
advantage of bitmap index, b-tree index and inverted 
index. Inverted index represented by bitmap is adopted to 
get result quickly by intersection operations. Meanwhile, 
tree structure is used to accelerate speed for range queries. 
BBI can be built on both high-cardinality and low-
cardinality columns and it is suitable to all data types. BBI 
established on different columns can cooperate with each 
other to promote the efficiency. Combining with 
aggregation which is based on user-driven, the approach 
can promote the efficiency for of cube queries as well. It 
does not only greatly promote the efficiency of frequently 
used queries, but also improve the performance of other 
queries. This paper discusses the space and time 
complexity of BBI, and the experiment results show good 
performance on space and time of this approach. Future 
work is planned to be focused on live update strategy.  
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