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Abstract—Privacy requirements have an increasing impact 
on the real-world applications. Technical considerations and 
many significant commercial and legal regulations demand 
that privacy guarantees be provided whenever sensitive 
information is stored, processed, or communicated to 
external parties. It is therefore crucial to design solutions 
able to respond to this demand with a clear integration 
strategy for existing applications and a consideration of the 
performance impact of the protection measures. In this 
paper, we propose a solution to enforce data privacy and 
user privacy over outsourced database services. The 
approach starts from a flexible definition of privacy 
constraints on a relational schema, applies encryption on 
information in a parsimonious way and mostly relies on 
attribute partition to protect sensitive information. Based on 
the approximation algorithm for the minimal encryption 
attribute partition with quasi-identifier detection, the approach 
allow storing the outsourced data on a single database 
server and minimizing the amount of data represented in 
encrypted format. Meanwhile，by applying cryptographic 
technology on the auxiliary random server protocol, the 
approach can solve the problem of private information 
retrieval to protect user privacy. The theoretical analysis 
and experimental results show that our new model can 
provide efficient data privacy protection and query 
processing, efficient in computational complexity and dose not 
increase the cost of communication complexity of user 
privacy protection.  
 
Index Terms—outsourced database services, data privacy, 
user privacy, attribute partition, encryption 
 

I.  INTRODUCTION 

Privacy requirements have an increasing impact on the 
real-world applications. Technical considerations and 
many significant commercial and legal regulations demand 
that privacy guarantees be provided whenever sensitive 
information is stored, processed, or communicated to 
external parties. It is therefore crucial to design solutions 
able to respond to this demand with a clear integration 
strategy for existing applications and a consideration of 
the performance impact of the protection measures. As a 
recent manifestation of this trend, there has been growing 
interest in outsourcing database services (ODBS) in both 
the commercial world and research community. 

Consider the following real-life scenario: A hospital M 
has a patient database containing pattern about various 
diseases. M stores these disease patterns on an un-trusted 
external database server DB and allows a client A to 
access the database to get information with respect to A 
disease. This scenario poses several security issues as 
follows: 

1. Because DB is an un-trusted external server, M has 
to protect its data contents from being accessed and 
analyzed by DB and other intruders. This security issue is 
referred to as data confidentiality. 

2. Whenever a accesses DB, he does not want M or 
even DB operators to know exactly what he is concerned 
about, both the query and its result. This security issue is 
referred to as user privacy. 

3. Client A is not allowed to get more information 
other than what he is querying on DB. This is an 
important aspect in the real-world scenarios because A 
may have to pay for what he can get from DB and M does 
not allow him to get more that what he has paid for even 
A does not want to get what he does not need from DB 
and M. This security issue is referred to as data privacy. 

In general, protecting outsourced data mainly relates to 
the three security issues as mentioned above. The need of 
data confidentiality, data or user privacy depends on 
particular scenarios in the outsourced database services 
model and this must be considered carefully.  

A significant amount of research has recently been 
dedicated to the study of the outsourced data paradigm. 
Most of this research has assumed the data to be entirely 
encrypted, focusing on the design of techniques for the 
efficient execution of queries. One of the first proposals 
towards the solution of this problem is presented in 
[1,2,3], where data is encrypted on the client side before 
being stored in the un-trusted external server. In order to 
answer all database queries, the client need to fetch the 
entire database from server, decrypt it, and execute the 
query on this decrypted database. Of course, such an 
approach is far too expensive to be practical. With trusted 
computing [4], a tamper-proof secure co-processor could 
be installed on the server side, which allows executing a 
function while hiding the function from the server. 
However, such a scheme could involve significant 
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computational overhead due to repeated encryption and 
decryption at the row level. Reference [5] proposed 
secure multi-party computation techniques to ensure 
database safety, but the excessive communication 
overhead involved makes this approach even more 
inefficient than the trivial scheme in which the client 
fetches the entire database from the server. These 
approaches can protect the data from outsiders as well as 
the server, but they introduce difficulties in the querying 
process over encrypted data while still maintaining an 
acceptable query processing performance. In fact, a 
server that is secure under formal crypto-graphic notions 
can be proved to be hopelessly inefficient for data 
processing [6]. Reference [7] proposed a distributed 
architecture for outsourced database services which is 
different from data encryption techniques mentioned 
above. The key idea is to allow the client to partition its 
data across two or more logically independent database 
systems that cannot communicate with each other. Due to 
not involving repeated encryption and decryption, the use 
of such a distributed database for obtaining outsourced 
database services offers many advantages, such as un-
trusted service providers, provable privacy and efficient 
queries.   While presenting an interesting idea, it suffers 
from the assumption of the complete absence of 
communication among the servers. This assumption is 
clearly too strong and difficult to enforce in real 
environments. However, all of the above described data 
privacy/confidentiality solutions fail to satisfy the user 
privacy objectives. 

To satisfy the user privacy requirement, private 
information retrieval protocols (PIR) are employed. In 
principle, the PIR protocol allows a client to access a 
database without revealing to the server both the query 
and the returned result. Protocols for PIR schemes [8,9,10] 
are all based on the idea of using multiple copies of the 
database that are not allowed to communicate with each 
other. This allows the user to ask different questions from 
different copies of the database and combine the 
responses to get an answer to his query, without revealing 
his original query to any single database. Reference [11] 
uses a single database, but guarantees only computational 
privacy under the assumption that distinguishing 
quadratic residues from non-residues modulo composites 
is intractable. In fact, it can be shown that using a single 
database makes it impossible to achieve information 
theoretic privacy with sub-linear communication 
complexity. Reference [12] still uses a multiple database 
model, but the multiple databases are not copies of the 
original principal database. Rather, they are auxiliary 
database provided by WWW servers for user privacy 
purpose. It performs the initial setup computation which 
will be proportional to the size of the principal database, 
then, the principal database only needs to make O(1) on 
line computation to answer queries of users, while all the 
extra computation required on-line for privacy are done 
by the server, but the servers and the database need to 
engage in a re-setup after every m queries.  Nevertheless, 
all of the above described PIR protocols cannot satisfy 
the data confidentiality objectives. 

Note that the exposure of a set of attribute values 
corresponding to a row may result in a privacy violation, 
while the exposure of only some subset of it may be 
harmless. For example, revealing an individual's name 
and his salary may be a serious privacy violation. 
However, exposing the name alone, or exposing the 
salary alone, may not be a big deal. Hence, there is no 
need to encrypt both name and salary if there are 
alternative ways to protect the association between them.  

In this paper, we propose a novel approach to enabling 
data privacy and data confidentiality protection in an 
outsourced database service. The key idea is to combine 
attribute partition and encryption that allows storing data 
as only one principal database on a single database server. 
Attribute partition and encryption provide protection of data 
in storage, or when disseminated, ensuring no sensitive 
information is disclosed neither directly nor indirectly. 
The original relation schema R is split into two attribute 
partition. The first partition consists of attributes needed 
be encrypted to achieve data privacy/confidentiality, all 
these attributes are encrypted into a single encrypted 
attribute. The second partition consists of attributes 
needed not be encrypted and can be stored in plaintext. 
Then, we need to detect whether the combinations of 
distinct values of attributes in the second partition could 
identify individual row with sufficiently high probability. 
If there is such a set of attributes (quasi-identifier), we 
need to adjust the two attribute partition to ensure data 
privacy. Last, combing the single encrypted attribute and 
others attributes belong to the second partition, we create 
a new relation schema R', and provide an approximation 
algorithm to minimize the amount of data represented 
only in encrypted format, therefore allowing for efficient 
query execution. With this design, the data can be 
outsourced and stored on an un-trusted server, typically 
obtaining lower costs, greater availability and more 
efficient distributed access. The consequence of this 
design choice is that to evaluate a query, it is sufficient to 
access a single relation, thus avoiding join operations, 
which are quite expensive. Last, the advantage of having 
only part of data encrypted is that all the queries that do 
not access the confidential information will be managed 
more efficiently and securely. 

Meanwhile, based on the combination of auxiliary 
random servers and crypt-graphic technology, this paper 
introduces a new paradigm for private information 
retrieval, which allows for information theoretic privacy 
without replication of database. Since it is not possible to 
use a single database and achieve sub-linear communication 
complexity information theoretic results, this new model 
utilize auxiliary random servers to simulate multiple 
database model. Instead of replicating the principal 
database as in the underlying scheme, every copy is 
replaced by t+1 random servers whose contents are n 
pairs of keys <Ui,Vi>, where Ui is the result of encrypting 
sensitive attributes of each row, and Vi is the result of 
encrypting encryption function. An auxiliary server can 
not obtain information about the data.  

The rest of this paper is organized as follows. Section 2 
presents the general architecture of outsourced database 
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services, describing the space of techniques available for 
partitioning data and the trade-offs involved. Section 3   
describes how to define privacy constraints in outsourced 
database services. In section 4, we describe how to obtain 
data privacy/confidentiality based on attribute partition 
and encryption, introduce an approximation algorithm for 
minimal encrypted attribute partition. Section 5 describes 
how to obtain user privacy based on cryptographic 
technology on the auxiliary random server protocol. 
Finally, section 6 draws some conclusions. 

II.  GENERAL ARCHITECTURE 

The general architecture of an outsourced database 
service, as illustrated in Fig. 1, consists of a trusted client 
front-end as well as many auxiliary random servers that 
provide a database service. 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. The System Architecture of Outsourced Database services 

These auxiliary servers provide reliable content 
storage, data management and user privacy protection but 
are not trusted by the trusted client front-end to preserve 
data privacy. The principal database after engaging the 
services of some servers for the purpose of offering 
private and secure access to users, performs an initial 
setup computation with auxiliary servers. The servers are 
then ready to assist users in retrieving information from 
the principle database efficiently and privately during the 
online stage. 

The trusted front-end provides three pieces of 
functionality: 

1. Data Decomposition. By running approximation 
algorithm for attribute partition and encryption, the 
trusted front-end can first partition original relation in 
encrypted attributes and non-encrypted attributes, then it 
create a new relation and populate the new relation, and 
stores only the encrypted data on t+1auxiliary random 
servers, meanwhile, it stores schema metadata of relation 
decomposition at the trusted front-end. 

2. Query Processing. The queries received by the 
trusted front-end need to be translated into appropriate 
SQL sub-queries to be sent to the servers, and the results 
are gathered and post-processed before being returned in 
a suitable form to the user application. 

3. Metadata Repository. The schema metadata of 
relation decomposition, the generalization involved in 
encryption processing, and the statistics for query 
optimization are stored in metadata repository of the 
trusted front-end. All data in metadata repository can be 
used to achieve efficient database queries. 

Our work assumes that access to data is realized by an 
application that includes trusted auxiliary random servers, 
which are invoked every time there is need to access 
sensitive information. By contrast, the DBMS needs not 
be trusted, since accessing encrypted information in a 
single relation does not expose to any privacy breach. 
The front-end module is also assumed to be completely 
trusted and secure. Preventing the front-end breaches is a 
traditional security problem unrelated to privacy-
preserving data storage, and we do not concern ourselves 
with this problem here. Thus, we assume that every 
server be honest, it does not act maliciously by providing 
erroneous service to the front-end or by altering the 
stored data. We also assume that the front-end maintains 
separate, permanent channels of communication to every 
server. 

III.  DEFINING THE PRIVACY CONSTRAINTS 

We consider a scenario where the data to be protected 
are represented with a single relation r over a relation 
schema ),,,( 21 naaaR "" , and we use R to denote either 
the relation schema R or the set of attributes in R. Our 
privacy requirements are specified as a set of privacy 
constraints C, expressed on the schema of relation R. 
Each privacy constraint c is represented by a subset of the 
attributes of R. 

Definition 1 (Privacy constraint): Given a relational 
schema ),,,( 21 naaaR "" , a privacy constrain c over R is a 
singleton set {a}, stating that the values of the attributes 
are sensitive, or a subset of attributes in R, stating that the 
association between values of the given attributes is 
sensitive.  

We illustrate this definition by an example. Consider a 
company desiring to store relation R consisting of the 
following attributes of employees: SSN, Name, Date of 
Birth(DoB), Zip, Job, Salary, Des. Fig. 2 illustrates an 
example of relation employees. 

 
SSN Name DoB Zip Job Salary Des 

340-34-01 
342-45-23 
340-34-12 
340-34-07 

…… 

Zhangsan
Lisi 

Wangwu
Zhaoliu 

…… 

18/02/78
25/10/76
15/08/77
12/06/78

…… 

233011 
233041 
233051 
233061 

…… 

Worker 
Salesman 
Manager 
Worker 

…… 

123.4
234.5
456.7
321.4
……

Aaa 
Bbb 
Ccc 
Ddd 
…… 

Figure 2. An example of plaintext relation 

The company may have the following considerations 
about privacy:  

1. SSN is sensitive information subject to misuse, 
therefore the SSN attribute form a singleton privacy 
constraint and cannot be stored in the clear under any 
circumstances. 

2. Salary and Job are considered private details of 
individuals, and so cannot be stored together with an 
individual’s name in the clear. Therefore, the sets {Name, 
Salary} and {Name, Job} are all privacy constraints. 

3. The set of attributes {DoB, Zip, Salary} can help 
identify a person in conjunction with other publicly 
available data. Therefore, the set {DoB, Zip, Salary} is 
also a privacy constraint. 

Auxiliary Servers Trusted front-end 

Data decomposition 

Metadata 

Server 2 
DB 

Data  
owner 

Client 

Server n 

Server 1 

Query Processing 
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4. In order to prevent an adversary from learning 
sensitive association, for example, between job and salary. 
Therefore, we need to add privacy constraint {Job, Salary} 

In general, we are interested in enforcing a set of well 
defined privacy constraints, formally defined as follows. 

Definition 2 (Well defined privacy constraints): Given 
a relation schema ),,,( 21 naaaR "" , a set of privacy 
constraints },,{ 1 mccC "=  is said well defined over R, iff 

)1( miCci ≤≤∈∀  , 
ijjiji ccccjiCcc ⊄∧⊄≠∈∀ ,,, . 

According to the definition, a set of privacy constraints 
C over R cannot contain a constraint that is a subset of 
another constraint. The Rationale behind this property is 
that, whenever there are two constraints ci, cj and ci is a 
subset of cj, the satisfaction of constraint ci implies the 
satisfaction of constraint cj, and therefore cj is redundant. 

The Company may have the following privacy 
constraints defined: 

c1 = {SSN} 
c2 = {Name, Job} 
c3 = {Name, Salary} 
c4 = {DoB, Zip, Salary} 
c5 = {Job, Salary} 
Thus, the set of well defined privacy constraints is 

{{SSN}, {Name, Job}, {Name, Salary}, {DoB, Zip, 
Salary}, {Job, Salary}} 

Note that the association of employee’s SSN and name 
is sensitive and should be protected. However, such a 
privacy constraint is not specified since it is redundant, 
given that SSN as an individual attribute sensitive. 

IV.  OBTAINING DATA PRIVACY/ CONFIDENTIALITY VIA 
ATTRIBUTE PARTITION AND ENCRYPTION 

The approach to satisfy privacy constraints is based on 
the use of two techniques: encryption and partition. 
Consistently with how the privacy constraints are 
specified, encryption applies at the attribute level, that is, 
encrypting an attribute means encrypting all its values. 
Partition, like encryption, applies at the attribute level, 
that is, partition means splitting sets of attributes so that 
they are not visible together without access to the 
encryption key. It is straightforward to see that singleton 
constraints can be solved only by encryption. By contrast, 
an association constraint can be solved by encrypting any 
of the attributes involved in the constraint or partition the 
attributes involved in the constraint so that they are not 
visible together. 

A.  Attribute Partition and Encryption 
Given a set of privacy constraints over relation R, our 

goal is to split R into two party F1 and F2, in such a way 
that all sensitive data and associations are protected. F1 
includes all encrypted attributes and F2 includes all non-
encrypted attributes, and the partition should satisfy two 
important requirements:1)all attributes in R should appear 
in at least one party to avoid loss of information; 2)the 
privacy constraints should be properly protected, meaning 
that from the partition stored at the external server should 
not be possible to reconstruct the content of the original 

relation R. these two requirements are formally captured 
by the following definition of correct attribute partition. 

Definition 3 (Correct partition): Let ),,,( 21 naaaR ""   be a 
relation schema, },,{ 1 mccC "=  be a set of well defined 
privacy constraints over R, and },{ 21 FFF=  be a attribute 
partition for R, where F1 includes all encrypted attributes 
and F2 includes all non-encrypted attributes and 

φ=21 FF ∩ . F is a correct partition for R, with respect to C, 
iff: 1) RFF =21 ∪  and 2) 2, FcCc ⊄∈∀ . 

The first condition requires every attribute in the 
schema of the original relation R to be represented in at 
least a party. The second condition requires the party 
stored at the external server in clear to not be a superset 
of any privacy constraint. Note that since F1 stores all 
encrypted attributes, it can contain sensitive data and 
association constraints. For instance, given the set of well 
defined privacy constraints {{SSN}, {Name, Job}, 
{Name, Salary}, {DoB, Zip, Salary}, {Job, Salary}}, 
partition F={{SSN, Name, Salary}, {DoB, Job, Zip, Des}} 
is a correct partition for employees.  

At the physical level, a decomposition of relation R 
translates to a combination of attribute partition and 
encryption. Each partition },{ 21 FFF =  is mapped into a 
physical partition containing all the attributes of R. All 
attributes in F1 are encrypted and all attributes in F2 
appear in the clear. The reason for keeping all the original 
attributes in physical partition is to guarantee that any 
query can be executed by querying a single relation and 
can avoid the expensive join operation. For the sake of 
simplicity and efficiency, we assume that all attributes in 
F1 are encrypted all together. Physical partition is defined 
as follow. 

Definition 4 (Physical partition): Let R be a relation 
schema, and },{ 21 FFF =  a decomposition of R. The 
physical partition of R is a relation schema R'(enc, 
a1,…,an), where enc represents the encryption of all the 
attributes of R that belong to F1, attributes a1,…,an belong 
to F2. 

At the level of instance, given a partition },{ 21 FFF =  
and a relation r over schema R, the physical partition R' is 
such that each plaintext tuple rt∈ is mapped into a tuple 

rt e ′∈ , where r' is tuple of relation R'. 
]),,[(][ 1 ipik

e aatEenct "=  ,   
11 },,{ Faa ipi ="  

]),,[],,[ 11 jkjjkj
e aataat "" = , 

21 },,{ Faa jkj ="  
It is clear that it is always possible to obtain a partition 

of attributes that obeys all the privacy constraints. In the 
worst case, we can encrypt all the attributes to obey all 
possible privacy constraints. A key question that remains 
is: What is the best partition to use, where "best" refers to 
the partition that minimizes the communication cost of 
queries the being executed against the database? Let 
size(a) be the physical size of attribute a and size(F) be 
the size of partition, computed as the physical size of the 
attribute composing F1, that is ∑ ∈

=
1

)()( 1 Fa
asizeFSize . 

Definition 5 (Minimal encrypted attribute partition): 
Given a relation ),,,( 21 naaaR ""  and a set of well defined 
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privacy constraints },,{ 1 mccC "= over R, },{ 21 FFF =  is a 
minimal encrypted attribute partition, if and only if F is a 
correct partition and F ′∃/ such that )()( 11 FsizeFsize <′ . 

The minimal encrypted attribute partition directly 
corresponds to the classical NP-hard Weighted Minimum 
Hitting Set problem [13], which can be formulated as 
follows; 

Definition 6 (Weighted minimum hitting set): Given a 
finite set S, a collection C of subsets of S, a weight 
function: +→RSw: , find a hitting set S', that is, a subset 
of S containing at least one element for each subset in C, 
such that ∑ ′∈= )()( swSw Sa

 is minimum. 
The minimal encrypted attribute partition can be 

formulated as the problem of finding the set of attributes 
with lowest size for breaking each constraint. It is then 
immediate to see that there is a correspondence between 
the two problems that can be determined by taking 

},,,{ 21 naaaR ""=  as the finite set S, },,{ 1 mccC "= as the 
collection C, and by taking as a weight function w the 
attribute size (w(a)=size(a)). Since the two problems are 
equivalent, the minimal encrypted attribute partition is 
NP-hard.  

The classical approximation algorithm for the 
weighted minimum hitting set problem [14] follows a 
greedy strategy. Fig. 3 represents this approximation 
algorithm working on an instance of our minimal 
encrypted attribute partition. 

Algorithm1. Approximation algorithm for the physical 
partition 

 
INPUT 

},,,{ 21 naaaR ""=  

},,{ 1 mccC "=  

)1)(( niasize i ≤≤  

OUTPUT 
A  physical partition R' 

 
MAIN 

φ=1F    
While φ≠C  do 

          Let )( 1FRa −∈  be the attribute maximizing 

)(/|}:{| asizecaCc ∈∈  

          For each Cc∈  do 
                If ( ca∈ ) C=C-c 
          }{11 aFF ∪=  

12 FRF −=  

)( 1FEenc k=   // encrypting all attributes in F1 

2}{ FencR ∪=′  
For each rt∈  do  // populate new schema R' 

              ]),,[(][ 1 ipik
e aatEenct "=   //

11 },,{ Faa ipi ="  

             ]),,[],,[ 11 jkjjkj
e aataat "" =  //

21 },,{ Faa jkj ="  

             Insert te in R' 

return R' 
 

Figure 3. approximation algorithm for the minimal encrypted partition 

  Initially, the F1 is initialized to the empty set. At each 
iteration of the while loop, the algorithm choose the 

attribute a that does not belong to F1 and that maximizes 
the ratio between the number of constraints in C in which 
it is involved according to the size of attribute a. Hence, a 
is insert into F1 and set C of non solved constraints is 
updated removing the constraints in which the chosen 
attribute a is involved. The loop terminates when all 
constraints are solved. Then, F2 is obtained as the 
complement of F1 with respect to R.  

Fig. 4 represents the execution of attribute partition, 
step by step, of the algorithm in Fig.3 on relation 
employees, considering the privacy constraints {{SSN}, 
{Name, Job}, {Name, Salary}, {DoB, Zip, Salary}, {Job, 
Salary}} and suppose size(SSN)=18, size (Name)=15, 
size(DoB)=8, size(Zip) =6, size(Job) =10, size(Salary) 
=20, size(des)=100. 
 

privacy 
constraints 

C 

)(/|}:{| asizecaCc ∈∈  
F1 SSN Name DoB Zip Job Salary Des 

c1,c2,c3,c4,c5 
c1,c2,c4 
c1,c2 
c2 
Ф 

1/18
1/9 
1/9 
_ 
_ 

2/15
1/15
1/15
1/15

_ 

1/8
1/8
0 
0 
0 

1/6
1/6
_ 
_ 
_ 

2/10 
_ 
- 
_ 
_ 

3/20 
2/20 
1/20 
1/20 

0 

3/100 
2/100 
1/100 

0 
0 

Job 
Job,Zip 
Job,Zip,SSN 
Job,Zip,SSN,Name 
Job,Zip,SSN,Name

Figure 4. An example of execution of the attribute partition algorithm 

The first column in the table represents the set of 
privacy constraints that are still unsolved; the subsequent 
seven columns represent, for each attribute in R, the 
number of unsolved constraints in which they are 
involved, divided by the attribute's size; the last column 
represents the attributes composing F1. Symbol – 
associated with an attribute means that the attribute 
already belongs to F1 and therefore it does not need to 
consider anymore. The solution computed by the 
algorithm is F={{SSN, Name, Zip, Job}, {DoB, Salary, 
Des}}, which is minimal partition for the considered 
example. 

The algorithm in Fig. 3 also shows the construction 
and population of physical partition. Fig. 5 illustrates an 
example of physical partition for original relation R that 
correctly enforces the well defined constraints in C. 

 
Enc DoB Salary Des 
α 
β 
γ 
δ 

…… 

18/02/78 
25/10/76 
15/08/77 
12/06/78 

…… 

123.4 
234.5 
456.7 
321.4 
…… 

Aaaaaa 
Bbbbbb 
Cccccc 
Dddddd 

…… 

Figure 5. An example of physical partition for original relation R 

Enforcing selective access with the explicit definition 
of authorizations requires the trusted front-end to 
intercept and process each query request and each reply 
to filter out data the client is not authorized to access to 
increase the processing and communication load at the 
trusted front-end site. To enforce selective access, this 
model defines and maintains additional information at the 
level of metadata at the trusted front-end site. 

Fig. 6 illustrates an example of metadata stored at the 
trusted front-end site during the processing of attribute 
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partition and encryption. The first four columns represent 
the original schema and new schema; the flag column 
represents whether the attribute is encrypted; the last 
column stores the keys used to encrypt tuples. 

 
Ori Table Ori Attr  New Table New Attr Flag Keys 
Emploree 
Emploree  
Emploree  
Emploree 
Emploree 
Emploree 
Emploree 

SSN 
Name 
DoB 
Zip 
Job 

Salary 
Des 

Emploree' 
Emploree' 
Emploree' 
Emploree' 
Emploree' 
Emploree' 
Emploree' 

Enc 
Enc 
DoB 
Enc 
Enc 

Salary 
Des 

1 
1 
0 
1 
1 
0 
0 

Abcd 
Abcd 
Null 
Abcd 
Abcd 
Null 
Null 

Figure 6. An example of metadata associated with the trusted front-end 

Algorithm running time complexity analysis: Given 
relation schema },,,{ 21 naaaR ""=  and a set of privacy 
constraints },,{ 1 mccC "= , to chose attribute a from R, in 
the worst case the algorithm scans Constraints C, and 
adjusts C for each attribute involved in at least one 
constraint with a. This operation cost O(mn) for each 
attribute chosen. 

B.  Physical Partition with Quasi-Identifier Detection 
The sensitive attributes can be defined explicitly when 

user want to outsource data to the service provider. 
However, it is difficult for user to define those privacy 
constraints implied by the combinations of distinct 
seemingly innocuous attribute values. For example, in a 
statistic database, attributes that seem innocuous, such as 
gender, date of birth, zipcode, can be joined with other 
data to re-identify individuals. It is necessary to find 
automatically whether the combinations of distinct 
seemingly innocuous attribute values could identify 
individual row with sufficiently high probability. If there 
is such a set of attributes, we need to adjust the result 
relation R'. We can choose randomly an attribute belong 
to the quasi-identifier and put the attribute into F1 to 
adjust the relation R'. In order to automatically detect 
quasi-identifier [15], following basic concepts are defined: 

Definition 7 (Quasi-identifier set):  A quasi-identifier 
set is a minimal set of attributes in Relation R that can be 
joined to re-identify individual records with sufficiently 
high probability. 

Definition 8 (α-quasi-identifier): An α-quasi-identifier 
is a set of attributes along which an α fraction of records 
in the universe can be identified by values along the 
combination of these attribute columns uniquely. 

Definition 9 (Attribute multiple domain): Let 
knnn ,,, 21 …  

be the number of distinct values along columns 
kaaa ,,, 21 …  

respectively. The Total number of distinct values taken 
by the 

kaaa ,,, 21 …  columns is 
kdddD ×××= …21

. 
Suppose that a set of columns take D different values 

with probabilities
nppp ,,, 21 … , Where ∑ =

=
D

i ip
1

1 . Let 

us calculate the probability that ith element is a singleton 
in the universal table R. It means first selecting one of the 
entries in the table (there are n choices), setting it to be 
this ith element with probability pi, and setting all other 
entries in the table to something else(which happens with 

probability ( 1)1( −− n
ip ). The probability of ith element being a 

singleton in the universal table R is 1)1( −− n
ii pnp . 

Let Xi be the indicator variable representing whether ith 
element is a singleton, then its expectation: 

inp
i

n
iiii enppnpXPXE −− ≈−=== 1)1(]1[][ . 

Let ∑=
=

D

i iXX
1

 be the counter for number of singleton, 

its expectation is given by ∑∑
=

−

=

==
D

i

np
i

D

i
i

ienpXEXE
11

][][ . 

Let us analyze which distribution maximizes expected 
number of singletons. We aim to maximize ixD

i i ex −
=∑ 1

, 

subject to nxD

i i =∑ =1
and Dixi ≤≤∀≤ 1,0 . 

Theorem 1 If nD≤ , then the expected number of 
singletons is bounded above by D/e. 

Proof: if xx exxfxexf −− −=′= )1()(,)(  and xexxf −−=′′ )2()( . 
Thus, the function f has a global maximum at x=1, since 

0)1( =′f and 0)1( <′′f . Now the expected number of 
singletons is  

e
Deex

D

i

D

i

x
i

i =≤ ∑∑
=

−

=

−

1

1

1 . 
Theorem 2 If nD≥ , the expected number of singleton  

is bounded above by Dnne /− . 
Proof: f xx exxfxexf −− −=′= )1()(,)( and xexxf −−=′′ )2()( . 

The function f has a point of inflection at x=2, since 
0)( <′′ xf for x<2 implying the function is concave here, 

and 0)( >′′ xf for x>2 implying the function is convex 
here. It is sure that no xi ≥ 2 while maximizing 

∑ =
−D

i
x

i
iex

1
. Otherwise: after maximizing ∑ =

−D

i
x

i
iex

1
, 

some xa≥2. As nD≥  and nxD

i i =∑=1
, some 1<bx . For 

some small δ  , replacing 
ax by δ−ax  and bx by δ+bx  

while retaining nxD

i i =∑ = 1
.As xxexf −=)(  

increases towards x=1, )()( aa xfxf >−δ  and )()( bb xfxf >+δ . 
Thus ∑ =

−D

i
x

i
iex

1
is increased, contradicting the fact that 

it was maximized. Thus, 2,1 ≤≤≤∀ ixDi .Now 0)( <′′ xf  
for 20 ≤≤ x . Since f is concave, we can get 

D
n

D
xD

i

ix
i

D

i

D

i
x

i nee
D
x

Dex
D

Dex
D

i
i

ii

−
−

=

−

=
=

− =∑•≤= =∑∑∑
)(

11
1

1)(1 . 

Thus, if nD≥ , the expected number of singletons is 
bounded above by Dnne /− . 

Theorem 3  Given a table of size n, a set of attributes 
can form an α-quasi-identifier if the number of distinct 
values along the columns, )/1ln(/ αnD> . 

Proof: Note that D>n. If not, then, by Theorem 1, the 
maximum expected fraction of rows taking unique values 
is aeenD <≤ /1/ . From Theorem 2, the maximum expected 
fraction of rows taking unique values along the columns 
with D distinct values is e-n/D. For the set of documents 
to form a α-quasi-identifier, this fraction must be larger 
then α. Thus e-n/D>α, which implies that )/1ln(/ αnD> . 

In order to detect whether quasi-identifier exists in 
non-encrypted attributes automatically, we need to add 
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the quasi-identifier detection in algorithm 1. Fig. 7 
illustrates the approximation algorithm for physical 
partition with automatically detection of quasi-identifier. 

Algorithm2. Approximation algorithm for the physical 
partition with automatically detection of quasi-identifier 

 
INPUT 

},,,{ 21 naaaR ""=  

},,{ 1 mccC "=  

)1)(( niasize i ≤≤  

α  
OUTPUT 

A  physical partition R' 
 
MAIN 

φ=1F    
While φ≠C  do 

          Let )( 1FRa −∈  be the attribute maximizing 

)(/|}:{| asizecaCc ∈∈  

          For each Cc∈  do 
                If ( ca∈ ) C=C-c 
          }{11 aFF ∪=  
    End while 

12 FRF −=  
// detecting quasi-identifier in F2 
QI=Quasi-identifier(F2, α) 
 While φ≠QI  do 
       Let b be any attribute in QI 
       }{11 bFF ∪=  

}{22 bFF −=  
QI=Quasi-identifier(F2, α) 

             End while 
           // populate new schema R' 

)( 1FEenc k=   // encrypting all attributes in F1 

2}{ FencR ∪=′  
For each rt∈  do   

              ]),,[(][ 1 ipik
e aatEenct "=   //

11 },,{ Faa ipi ="  

             ]),,[],,[ 11 jkjjkj
e aataat "" =  //

21 },,{ Faa jkj ="  

             Insert te in R' 

return R' 
Figure 7. Approximation algorithm for the minimal encrypted 

partition with automatically detection of quasi-identifier 

We test the automatically detect quasi-identifier on the 
cell-phone card data provided by a mobile company. This 
dataset has total n =3*107 rows with 31 columns. We 
choose 25860 rows from the dataset and consider 8 non-
sensitive attributes of them. The 8 non-sensitive attributes 
are open date, null flag, use state, resource type, 
manufacture code, business type, node level and card 
type. The distinct values of the 8 non-sensitive attributes 
are 60, 2, 8, 14, 7, 40, 5 and 20. The experiment was run 
on a machine with 2.31GHz processor and 2GB of RAM 
running windows XP. Fig. 8 illustrates an example of 
detecting quasi-identifier automatically. 

  The column ROW is the number of test; the column 
CN is the number of columns that make the quasi-
identifier; the column N is the number of rows uniquely 
identified in the projection; the column G1 is the fraction 
of rows uniquely identified, given by N/25860; the 
column D is the product of the domain sizes of the 

attributes; and the column G2 is the fraction of singletons, 
given by f(D/n)=D/en for D<n and e-n/D for D>n.  
Given a=0.2, if we only consider the value of G1, then 
rows numbered 5,6,7 and 8 are all quasi-identifier and 
can not be publish. In fact, G1 > 0.2 fraction of the rows 
should not get uniquely identified, then, only row 8 
qualifies as a possible 0.2-quasi-identifier as only its G2 
value exceeds 0.2. 

 
ROW CN N G1 D G2 
1 
2 
3 
4 
5 
6 
7 
8 

1 
2 
3 
4 
4 
5 
5 
8 

2 
835 
52 

2756 
7081 
11567 
10034 
21802 

7.0*10-5 

0.029 

1.8*10-3 

0.096 

0.247 

0.405 

0.351 

0.763 

60 
1200 
600 

268800 
672000 
940800 

5.37*106 
3.76*108 

7.4*10-7

1.48*10-5 

7.4*10-6 

3.29*10-3 

8.24*10-3 

1.15*10-2 

6.58*10-2 

0.92 

Figure 8. An example of detecting quasi-identifier automatically 

V.  OBTAINING USER PRIVACY VIA AUXILIARY RANDOM 
SERVERS BASED ON ENCRYPTION 

    We still use the protocol like RSM-PIR [12] to achieve 
user privacy protection in our new model. Although the 
computational complexity of the RSM-PIR protocol 
reaches O(1), its communication complexity reaches 
O(Cs*logn), logn times of the information retrieval 
scheme S. To ensure safety, auxiliary servers needs to set 
up safety coefficient to reset the random string r and 
permutation π, which increase the computation cost of 
setup stage. To overcome the drawback of the RSM-PIR 
protocol, we combine auxiliary servers and crypt-graphic 
technology to achieve the same functions of the RSM-
PIR protocol by replacing the random string r and 
permutationπwith n pairs of private keys <Ui,Vi>. Due 
to encryption in the new protocol, the computation 
complexity increases, and the communication complexity 
remains the same O(Cs) as protocol S. Because the new 
protocol needs no safe coefficient, the computation cost 
during setup stage decrease.  Before we detail our new 
model, we introduce parameters setting as follows: 
    

nttt ′′′ ,,, 21 "  : be tuples of the relation R'. 
E: be efficient symmetrical encryption algorithms, such 

as AES and DES, where )(TEU k=  and )(1 UET k
−= . 

F: be permutable encryption function, which means 
using different keys to encrypt plaintext in different order 
may obtain the same result, that is, ))(())((

1221
TFFTFF kkkk =  

To achieve total independence, all auxiliary servers 
must be independent of the data. On the other hand we 
must use a number of multiple servers in order to achieve 
information theoretic results that are efficient. To 
accommodate these two conflicting requirements we use 
the following steps during setup stage:  

1. nii ≤≤∀ 1, , the database server chooses at random 
n keys 

nkkk ,,, 21 "  for symmetrical encryption function 
E,  and chooses key e for permutable encryption function 
F to encrypt 

nttt ′′′ ,,, 21 " , the results represent as follows: 
)(),( 1111 1

kFVtEU ek =′=  
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)(),( 2222 2
kFVtEU ek =′=  

…… 
)(),( nennkn kFVtEU

n
=′=  

2. The database server sends n pair of cipher <U1,V1>, 
<U2,V2>, ……, <Un, Vn> to k auxiliary servers, and each 
auxiliary servers contains the n pair of cipher <Ui, Vi>. 

In the on line stage the client interacts with the servers 
and the principal database in order to obtain his query. 
The steps can be described as follows: 

1. Utilizing information retrieval scheme S, the client 
accesses the k auxiliary servers to get the pair of cipher 
<Ui, Vi> as the security label which be only known to the 
client. 

2. The client chooses a private key r to compute 
)( ir VFG =  and sends G to the database server. 

3. The database server decrypts G using the permutable 
encryption function F to compute H and sends H to the 
client: 

))((())(()( 111
iereiree kFFFVFFGFH −−− ===  

)()))(((1
iriree kFkFFF == −  

4. The client first decrypts H using the private key r to 
compute ki : iirrr kkFFHF == −− ))(()( 11 ,  then , it decrypts 
Ui using ki to compute t'i: iikkik ttEEUE

iii
′=′= −− ))(()( 11 . 

Here, we choose Pohlig-Hellman encryption scheme 
[16] as the permutable encryption function F, where 
encryption processing is pTU e mod=   and decryption 
processing is pUT d mod= . We assume that p is a big 
prime (1024 bit), the client's pair of private keys be (r,s), 
and the database server's pair of private keys be (e,d). If 
an adversary has the e and p, he can know d, otherwise, 
he has to computer pUe T modlog=  to get d. 

It is clear that our scheme is correct. Utilizing protocol 
S, the client accesses the k auxiliary servers to get 
<Ui,Vi>, and can get what he want to get t'i using the 
permutable encryption function F. 

Our scheme is safety and discloses no client's privacy 
information. The security of getting <Ui,Vi> depends on 
the information retrieval scheme S, and the k auxiliary 
servers have not known anything about i. The Client 
sends G to the database server, but the database server 
does not know the private r key, it can not decrypt G to 
obtain any information about t'i. If in multiple executions 
two clients are interested in the same query, the database 
will receive the same query and will know that the two 
queries are the same. This problem can be fixed by 
changing the client's pair of private keys <r,s>. 

Our scheme also ensures that the client be not allowed 
to get more information other than what he is querying on 
the database server. If the underlying S is database private, 
the client can get nothing except for the pair of <Ui,Vi>. 
If the underlying S is not database private, the client can 
get <Uj,Vj> besides the pair of <Ui,Vi>, hence, the client 
can get more information then he should get. This 
problem can be fixed by replacing pkU e

ii mod= with 

pkPU e
ii mod)((=  in Pohlig-Hellman encryption scheme, 

where p is a padding format. 

The communication complexity of the scheme during 
the on line stage is O(Cs), where Cs is the complexity of 
the information retrieval scheme S. We do not consider 
the communication complexity of setup stage, because 
the communication work can be done off line. During the 
on line stage, the client needs to access the k auxiliary 
servers based on S. Let the size of tuple of relation R' be 
m bits, the total size of database is N=m*n bits, each 
auxiliary server contains n pair of <Ui,Vi>, the total size 
of Ui and Vi  are N bits and 1024*n bits. The 
communication costs of retrieving Ui and Vi are Cs and 
(1024/m)* Cs. The communication cost between the client 
and database server is logG+logH, so the communication 
cost of this scheme is (1+1024/m)*Cs+logG+logH, and 
holds the same communication complexity O(Cs) as 
scheme S. 

The computation complexity of the scheme during the 
on line stage is O(log3p). Due to the large amount of 
encryption computation having been done in setup stage, 
in fact, the computation cost for the principal database is 
only an encryption operation during the on line stage, that 
is, pUGFH e

e mod)(1 == − , and the computation complexity 
of this encryption operation is O(log3p). The computation 
complexity of this scheme is independent on the size of 
database and is only dependent on prime p.  

VI.  CONCLUSIONS  

We have described new techniques for enforcing data 
privacy/confidentiality and user privacy over outsourced 
database services using attribute partition and encryption, 
and applying cryptographic technology on the auxiliary 
random server protocol. The main contribution of this 
paper is threefold. First, we provide a simple and 
powerful way to capture privacy requirements. Second, 
we provide a model to obtain data privacy/confidentiality 
based on attribute partition and encryption, and introduce 
an approximation algorithm for minimal encrypted 
attribute partition with automatic detection of quasi-
identifier. Third, we propose a new model for PIR, 
utilizing cryptographic technology on auxiliary random 
servers providing privacy services for database access. 
We conclude that this provides a powerful new building 
block for the construction of outsourced database services 
in the un-trusted infrastructure. 
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