
A CPN-based Software Testing Approach

Lizhi Cai
Shanghai Key Laboratory of Computer Software Evaluating & Testing, Shanghai, China

Email: clz@ssc.stn.sh.cn

Juan Zhang 1 and Zhenyu Liu 2
1Shanghai Key Laboratory of Computer Software Evaluating & Testing, Shanghai, China

2School of Computer Engineering and Science, Shanghai University, Shanghai, China
Email: {zhangj, lzy }@ssc.stn.sh.cn

Abstract— As a graphical and mathematical modeling tool,
CPN (Colored Petri Net) is often used to describe the
transition of states for an information system. The
advantage of CPN model is that the model can be simulated
dynamically. This paper presents an approach to generating
test cases based on a transition graph of CPN model. The
transition graph provides a solid basis for test cases
generation in a form that can be easily manipulated. The
case for vending machine illustrates the effectiveness of this
method.

Index Terms—software testing, CPN, model-based,
simulation

I. INTRODUCTION

Software testing is an important activity to assure the
quality of software. Specification based testing, refers to
the test method in which the generation of test cases is
based on the system’s specification, without seeing an
implementation of the information system. Furthermore,
the test cases can be developed before the program even
exists,. The advantage of specification based testing is
that the test cases can be independent of any particular
implementation. In this case the software specifications
are the main sources for generating test cases as these
documents describe the software system to be developed
in detail. Software specifications may be natural language
description, formal language specification or formal
model. The research on specification based testing
focuses on test data generation methods for deriving test
cases from formal specification[1,2,3]. Generating test
cases based on specification can not only helps developer
to test their program when they finish coding but also
controls the developers to program the software as
defined in the software specification.

Model based testing is one special specification based
testing. In model based testing, the test cases can be
developed from a model. The model can be thought as
one formal specification, because it can provide clear
high level description, sometimes in formal
representations, for the software system. Usually, the
specification described by a model can be validated and
simulated. During a testing stage, software testers use test

data as input to run the software program. The testers
usually have an expected outcome from these data, which
is also called test oracle. Testers have to compare
between test oracle and actual result to decide whether a
program executes correctly for the given test, and make a
verdict of “pass” or “fail”. The construction the
software’s oracle is labor-intensive and time-intensive
work in the process of test cases design. The simulation
of the model can provide the oracle of the system
effectively, which reduces one of the major costs of
testing. Model based testing provides a solid foundation
for generating test cases from a formal method. In the
recent years with the development of the modeling
techniques, such as UML (Unified Modeling Language),
FSM (Finite State Machines), CPN (Colored Petri Net)
and so on, the requirements of the software test
automation, model based software testing gradually
receives researchers’ attention[4,5,6].

In our approach, we focus on generate test data from
CPN. Petri Net is originated from Carl Adam Petri’s
dissertation [7], communication with automata, in 1962.
A petri net is a graphical and mathematical modeling
approach used to describe information processing
systems that are characterized as concurrent,
asynchronous, distributed, parallel, nondeterministic
and/or stochastic. CPN combines the strengths of
ordinary petri net with the strengths of a high-level
programming language together with a rigorous
abstraction mechanism [8]. Petri net provides the
primitives for process interaction. The CPN has a formal
mathematical definition and a well-defined syntax and
semantics. This formalization is the analysis foundation
for the different behavioral properties [9, 10].

II. TESTING CRITERIA BASED ON CPN STATES SPACE

All the elements of petri net are strictly defined with
normative semantics. The system model based on petri
net is also very clear and strict. Petri net has sufficient
ability to support all modeling primitives, and have been
widely used in various fields of information system
modeling analysis and control. Literature [13] gives the
complete formal definition of a CPN as follows. The
purpose of this definition is to give a mathematically
sound and unambiguous description of a CPN.
Definition: A Colored Petri Net is a nine-tuple (, P, T,
A, N, C, G, E, I), where:

This work is supported by National Torch Project of China（No.
2009GH510068 ） and fund of Science and Technology Commission
of Shanghai Municipality (No. 10DZ2291800).

468 JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011

© 2011 ACADEMY PUBLISHER
doi:10.4304/jsw.6.3.468-474

1) is a finite set of non-empty types, also called
color sets. In the associated CPN Tool, these are
described using the language CPN-ML. A token is a
value belonging to a type.

2) P is a finite set of places. In the associated CPN
Tool these are depicted as ovals/circles.

3) T is a finite set of transitions. In the associated
CPN Tool these are depicted as rectangles.

4) A is a finite set of arcs. In the associated CPN Tool
these are depicted as directed edges. The sets of
places, transitions, and arcs are pairwise disjoint,
that is

.

5) N is a node function. It is defined from A into
. In the associated CPN Tool this

depicts the source and sink of the directed edge.
6) C is a color function. It is defined from P into .
7) G is a guard function. It is defined from T into

expressions such that:

8) E is an arc expression function. It is defined from A

into expressions such that:

where p is the place of N(a) and C(p)MS denotes the
multi-set type over the base type C(p).
9) I is an initialization function. It is defined from P
into closed expressions such that:

In the CPN Tool this is represented as initial marking
next to the associated place.

In practice, a CPN model can be created using CPN

tool [14] developed by University of Aarhus, Denmark. It
is a graphical tool that allows one to create a visual
representation of a CPN model. It is based on state
machine theory and is an extension of place-transition
petri net.

All the markings in the places of a CPN constitute
the state of a system being modeled. The dynamic
behavior of an information system is simulated in terms
of the firing of transitions. The fire of the transition of
model presents the reception of a request of a specific
operation such as the receiving the input data, or a user
action such as push down the button. The firing of a
transition makes the system transform from one state into
another. All the states of a system model constitute its
state space. The state spaces are calculated fully
automatically by the CPN state space tool using a state
space construction algorithm[14]. The CPN tool supports
a number of stop and branching options that makes it
possible for the user to control the state space generation.
The state space is a tuple <S0,S,T> such that:

 is the initial state which is composed of all the
initial markings in the CPN.

 S is the set of all states in state spaces. All the
elements of S will be reached by the transition fire
sequence from S0.

 T is the set of transitions. All the elements of T will

be enabled if the associated arc expressions of all
incoming arcs can be evaluated to a multi-set,
compatible with the current tokens in their
respective input places, and its guard is satisfied.

In general, there are infinitely many paths in state
spaces and hence it is impossible to cover all these paths.
Inspired by the traditional test data generation approach
based on specification[5] , this paper presents the
following coverage criteria out of a potentially infinite
family. Each of these criteria requires a different amount
of testing. The state spaces can be represented as a
directed graph. If <S0,S,T> is a state space, let and

 for . A sequence
 is call a path if s0=S0

and for . Let P is a set of paths.
(1) State Coverage (SC): The test set TS satisfies State

Coverage if the path P created by TS includes every
;

(2) Transition Coverage (TC): The test set TS satisfies
Transition Coverage if the path P created by TS
includes every ;

(3) Transition Pair Coverage (TPC): The test set TS
satisfies Transition Pair Coverage if the path P
created by TS includes every pairs of transition
linked by a ;

Figure 1. State transition graph.

Considering the node 3 in the Fig. 1, if the test set
TS satisfy the transition-pair criterion, the path P must
include the following six subpathes: 1-> 3 ->3 (2) 1->3-
>5 (3) 2->3->3 (4) 2->3->5 (5) 4->3->3 (6) 4->3->5.
These subpathes cover the following pairs of
transition :(p1,p4),(p1,P5),(p2,p4),(p2,p5), ,(p3,p4),(p3,p
5).

III. MODELING FOR VENDING MACHINE

The vending machine program is a classic example
for discussing in the software testing area as well as
triangle program. The program simulates the behavior of
a vending machine that issues drinks to customers. The
specification is as follows.
(1) A can of soft drink costs $.15.
(2) Only nickels and dimes are to be accepted as valid

coins to a payment. If the sum of money has been
accepted exceed $.15, the machine will refuse more
money.

(3) The machine will return the correct change, if the
customer insert too much money and in the same
time the machine has the nickels to make change.

JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011 469

© 2011 ACADEMY PUBLISHER

(4) In the case there are not enough coins in the
machine, the machine will show the information
“Inadequacy”.

(5) In the case there are not enough soft drink in the
machine, the machine will show the information
“NoDrink”.

(6) In the case there are not enough change in the
machine, the machine will show the information
“NoChange”.

(7) When the DrkBtn is pushed, a can of soft drink will
be dispensed only if it is available and the payment
is sufficient. And at same time the machine will
return the correct change.

(8) When the BkBtn is pushed, all the coins just
inserted into the machine by customer will be return.

Figure 2. The CPN Model of Vending Machine

There are three transitions in the model which
respectively stand for different user action: insert the
coins, push the drink button and push the change button.
The machine has three outputs: coin slot used to send the
change out, drink slot used to send the drink out, and
information windows used to show the state information
of machine. The model of vending machine is shown in
the Fig. 2. The different characteristics of vending
machine can be modeled very easily and explicitly by
defining appropriate types for the associated tokens and
function declarations using CPN ML which is based on
the functional programming language ML. In the CPN
model of each color corresponds to a data field. In order
to denote the different type in the vending machine such
as coin number, drink number and state information, we
introduce the following color sets:

colset INFOSET = with Ready|Inadequacy | NoChange |
NoDrink;
colset NickelNum=int;
colset DimeNum=int;
colset CoinNum=product NickelNum*DimeNum;
colset DrkNum=int;

The color set INFOSET is a enumerate type which
include four different values. These different values
show the different states presented by specification. To
simplify the description of the problem and provide the
convenience for discussion, we define CoinNum color

set which combination nickel and dime. The value (1,0)
means there is only a nickel and (0,1) means there is
only a dime. The value (1,1) means there are a nickel
and a dime at same time. All the places in the CPN
model will contain data input by user by GUI
Components or internal data as shown table1. Each place
will be associated with appropriate types defined by the
color sets as shown in table 1.

TABLE I. THE PLACES IN THE CPN MODEL

No. PlaceName
(Type)

Purpose

1 Coin
Insert_Slot
(CoinNum)

It is used to store the coins which will be
inserted into the vending machine.

2 CoinCache
(CoinNum)

It is used to store temporarily the coins
which have been inserted into the
vending machine.

3 Coin_Pool
(CoinNum)

It is the place used to store the coins
which have been really accepted by the
vending machine.

4 Drk_Pool
(DrkNum)

It is the place used to store the soft drink
in the vending machine.

5 Coin_Slot
(CoinNum)

It is used to store the change or
refundment returned by the vending
machine.

6 Drk_Slot
(DrkNum)

It is used to store the soft drik delivered
by the vending machine.

7 InfoWindow
(INFOSET)

It is used to show the state information
for user;

470 JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011

© 2011 ACADEMY PUBLISHER

All the actions are executed by the SML functions
associated to each transition of the processes. The
function start chk_insert is responsible for checking the
validity of number which a user inserts the vending
machine. The source code bellow shows such a function.

fun chk_insert(n1:NickelNum,d1:DimeNum,
n2:NickelNum,d2:DimeNum)=
 if(
 (n1+n2<=3 andalso d1+d2=0) (*only nickels*)
 orelse (n1+n2<=1 andalso d1+d2=1)

(*one dime, not more than one nickel *)
 orelse (n1+n2=0 andalso d1+d2=2))

(*two dimes, no nickel*)
 then
 (n1+n2,d1+d2)
 else
 (n2,d2);

When a user inserts the coins and pushes the button

DrkBtn, the vending machine will update the coin
number of the place Coin Cache. If the transaction is
successful, the number of Coin Cache will be set to zero.
The three cases described in specification 5, 6 and 7 will
lead to transaction failure. The following is source code
of the function update_coinc.

fun update_coinc(n:NickelNum,n3:NickelNum,
d:DimeNum,d3:DimeNum,drk:DrkNum)=
if (drk=0 orelse (((n*5+d*10) > PRICE) andalso n3=0)
orelse n*5+d*10< PRICE)
then
1`(n,d)
else
1`(0,0);

The function pr_info is used to show the
information of vending machine after a user push the
drink button. If none of coins are inserted the machine,
the state information will do not change. Otherwise the
machine will show “NoDrink” if there is not any drink in
the machine. The information “NoChange” and
“Inadequacy” are shown respectively according to the
number of changes in the machine and the sum of money
inserted by a user.
fun pr_info(n:NickelNum,n3:NickelNum,d:DimeNum,
drk:DrkNum,info:INFOSET)=
 if(n=0 andalso d=0) then info
 else
 if (drk=0) then NoDrink
 else
 if (n3=0) then NoChange
 else
 if (n*5+d*10<PRICE) then Inadequacy
 else
 Ready;

The changes will minus one if a user buy a can of

drink successfully use two dimes. In the case, the
machine has enough changes and drink. If a user inserts
neither more nor less than $.15, the machine will accept

all the coins. Otherwise the coins in the pool will hold
the line.
fun update_coinp(n:NickelNum,n3:NickelNum,
d:DimeNum,d3:DimeNum,drk:DrkNum)=
 if (((n*5+d*10)>PRICE) andalso (n3>0)

andalso (drk>0)) then
 1`(n3-1,d3+d) (*need change*)
 else
 if (((n*5+d*10)= PRICE) andalso (drk>0)) then
 1`(n3+n,d3+d)
 else
 1`(n3,d3) (* can not the drk*);

The function update_chg is used to send change to

output slot. When a user does not buy the drink
successfully, the machine will do not change the slot.
Otherwise, the machine will use the new state to update
the change slot.
fun update_chg(n:NickelNum,n1:NickelNum,
n3:NickelNum, :DimeNum,d1:DimeNum,d3:DimeNum,
drk:DrkNum)=
 if(n3=0 orelse drk=0 orelse (n*5+d*10<PRICE))
 then
 1`(n1,d1)
 else
 if ((n*5+d*10)>PRICE) then
 1`(1,0)
 else
 1`(0,0);

In the same way, we can define all function for

CPN model of the vending machine.

IV. SYSTEM STATE SIMULATION AND VALIDATION OF
THE CPN MODEL CORRECTNESS

Relative to the FSM, UML or other model, CPN
model has the advantage of dynamic simulation and
automated analysis of the state space. Suppose a user
want to buy the soft drink, but he has only a nickel. After
he inserts the nickel, the nickel runs from his wallet to
the cache in the vending machine. This process is shown
in Fig. 3.

(a) initial marking

(b) marking after inserting a nickel

Figure 3. The process simulation for inserting a nickel.

When the user pushes the Drink Button after he
inserted the nickel, The machine will change the
information from “Ready” to “Inadequacy” as Fig. 4(a)
and Fig. 4(b).

JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011 471

© 2011 ACADEMY PUBLISHER

(a) (b)

Figure 4. The information change after pushing the Drink Button.

After that the user pushes the Refundment Button.
The action can be simulated by firing the transition
Push_BkBtn. The coins in the coin cache place will be
sent out from coin slot. The state of the vending machine
come back to “Ready” from “Inadequacy” as shown in
Fig. 5(a) and Fig. 5(b).

(a)

(b)

Figure 5. The state change after BkBtn.

Just for funny the user pushes the Drink Button or
Refundment Button before he inserts the nickel. We can
fire the transition Push_BKBtn or Push_DrkBtn before
firing the transition Insert Coin to simulation this
situation. It is apparent that he could not get anything.

Simulation can only be used to consider a finite
number of executions of the model being analyzed. This
makes simulation suited for detecting errors and for
obtaining increased confidence in the correctness of the
model, and thereby the system. Full state spaces
represent all possible executions of the model being
analyzed. In CPN tools all the state will be explored by
state space tools. The state space report provides some
basic information about the size of the state space and
standard behavioral properties of the CPN model. The
part properties of the vending machine are shown in Fig.
6. From the report we can know that there is no dead
markings and dead transition instance. This means all the
state is reachable. This is an important evidence of the
correctness of the model.

V. GENERATING TEST CASES BASED ON CPN
The state space of the vending machine with a

nickel is shown in Fig. 7. Each node in the state space is
inscribed with three integers. The topmost integer is the
node number and the two integers separated by a colon
give the number of predecessor and successor nodes.
Node 1 corresponds to the initial marking, and the Fig. 7
shows all markings reachable by the occurrence of at
most three binding elements starting in the initial
marking.

.

Figure 6. The properties of CPN model.

A state is composed by the token of the all place in
the CPN model. The fires which change the state of CPN
model is shown in the bottom of the Fig. 7. Each line
represents the conditions and the results of one change.
The initial state and the termination state are also being
express in the same line. The information provides the
detail of model which is basis for generating test cases
on the model.

Figure 7. The State space of bending machine with only a nickel

The State Coverage requires that all the states in the
state spaces should be covered by the test cases.
According to section 3, we can get the state cover tree
for state space shown in Fig 8(a). There are more than
one test suite satisfy the State Coverage Criteria. Fig. 8(b)
is another test tree to cover all the five states because

472 JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011

© 2011 ACADEMY PUBLISHER

node 3 can be visited by two different test sequences.
The corresponding test cases are displayed in tableII and
table III.

Figure 8. State cover tree

TABLE II. TEST CASES FOR SCT IN FIGURE 8(A)

No. Covered
States

Transition Sequence

1 1,2,3,4,5 Insert_Coin
Push_DrkBtn
Push_BkBtn
Push_DrkBtn

TABLE III. TEST CASE FOR SCT IN FIGURE8 (B)

No. Covered
States

Transition Sequence

1 1,2,3,5 Insert_Coin
Push_BkBtn
Push_DrkBtn

2 1,2,4 Insert_Coin
Push_DrkBtn

The number of arc is far greater than the number of

nodes in a state space. So the State Coverage criterion is
relatively weak coverage criterion. The testing tree
shown in Fig. 9 is created by Transition coverage
Criterion. The transitions that do not change the state are
also be tested. For example, in the initial state,
transitions Push_DrkBtn and Push_BkBtn just
generation the arc from node 1 to itself. The
corresponding test cases are displayed in table IV.

In the same way, the pair transition coverage tree
can be generated as shown in Fig. 10. The corresponding
test cases are shown in table V.

Figure 9. the transition coverage tree

TABLE IV. TEST CASES FOR TCT IN FIGURE (B)

No. Covered
Transition

Transition Sequence

1 1f 1 Push_DrkBtn
2 1f 1 Push_BkBtn
3 1f 2f

3f 3
Insert_Coin
Push_BkBtn
Push_BkBtn

4 1f 2f
3f 5f 5

Insert_Coin
Push_BkBtn
Push_DrkBtn
Push_BkBtn

5 1f 2f
4f 3

Insert_Coin
Push_DrkBtn
Push_BkBtn

6 1f 2f
4f 4

Insert_Coin
Push_DrkBtn
Push_DrkBtn

Figure 10. The transition pair coverage tree

TABLE V. TEST CASES FOR TCT IN FIGURE

No. The center node of
Transition pair

Transition Sequence

1 1 Push_DrkBtn
Insert_Coin

2 1 Push_bkBtn
Insert_Coin

3 2 Insert_Coin
Push_BkBtn

4 2 Insert_Coin
Push_DrkBtn

5 4 Insert_Coin
Push_DrkBtn
Push_BkBtn

6 4 Insert_Coin
Push_DrkBtn
Push_DrkBtn

7 3 Insert_Coin
Push_BkBtn
Push_BkBtn

8 3 Insert_Coin
Push_BkBtn
Push_DrkBtn

9 3 Insert_Coin
Push_DrkBtn
Push_BkBtn
Push_DrkBtn

10 3 Insert_Coin
Push_DrkBtn
Push_BkBtn
Push_BkBtn

11 5 Insert_Coin
Push_DrkBtn
Push_BkBtn
Push_DrkBtn

JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011 473

© 2011 ACADEMY PUBLISHER

12 5 Insert_Coin
Push_BkBtn
Push_DrkBtn
Push_BkBtn

VI. CONCLUSIONS

Model based testing is one special specification
based testing technique. CPN combines the strengths of
ordinary petri net with the strengths of a high-level
programming language together with a rigorous
abstraction mechanism. It is often used in system
simulation and analysis. This paper presents a model-
based approach to generation test cases using CPN. The
vending machine is taken as a classic cases to build CPN
model. All the states in the state space of the model can
be generated automatically by the CPN tools. Three
coverage criteria have been presented in this paper for
the generation of test cases. The test cases generation for
vending machine illustrates the effectiveness of the
method.

REFERENCES

[1] G. Bernot, M. C. Gaudel, and B. Marre. Software testing
based on formal specification: A theory and a tools,
Software Engineering Journal, 6(6), pp387-405,1991.

[2] Robert M. Hierons. Testing from Z specification. The
Journal of Software Testing, Verification, and Reliability,
7, pp19-33, 1997.

[3] G. Laycock. Formal specification and testing: A case
study. The Journal of Software Testing, Verification, and
Reliability, 2, pp7-23,1992.

[4] Supaporn Kansomkeat, Jeff Offutt, Aynur Abdurazik and
Andrea Baldini. A Comparative Evaluation of Tests
Generated from Different UML Diagrams. Ninth ACIS
International Conference on Software Engineering,
Artificial Intelligence, Networking and
Parallel/Distributed Computing (SNPD 2008), pp867-
872, Phuket Thailand, August 2008.

[5] Jeff Offutt, Shaoying Liu, Aynur Abdurazik and Paul
Ammann. Generating Test Data From State-based
Specifications. The Journal of Software Testing,
Verification and Reliability, 13(1), pp25-53, March 2003

[6] Jeff Offutt and Aynur Abdurazik. Using UML
Collaboration Diagrams for Static Checking and Test
Generation. The Third International Conference on the
Unified Modeling Language (UML '00), pp383-395,
York, UK, October 2000

[7] Carl Adam “Petri. Communication With Automata”.
Tech. Rep. RADC TR-65-377, Rome Air Dev. Center.
New York, 1966.

[8] Ratzer A. V, Wells L, Lassen H. M, et al. “CPN Tools
for Editing Simulating and Analysing Coloured Petri
Nets”. Proceedings of the 24th International Conference
on Applications and Theory of Petri Nets (ICATPN
2003), Eindhoven, The Netherlands: Springer-Verlag,
2003. 450-462.

[9] Kyller Gorgˆonio, Fei Xia. Modeling and verifying
asynchronous communication mechanisms using
coloured Petri nets. The 8th International Conference on
Application of Concurrency to System Design, 2008.
ACSD 2008. pp138 – 147

[10] Vijay Gehlot, Thomas Way, Robert Beck and Peter
DePasquale. Model Driven Development of a Service
Oriented Architecture (SOA) Using Colored Petri Nets.
First Workshop on Quality in Modeling, ACM/IEEE 9th
International Conference on Model Driven Engineering
Languages and Systems, Models 2006, Genova, Italy,
pp63-77, October 1-6, 2006

[11] Guy Helmer, Johnny Wong and Mark Slagell et al.
Software fault tree and coloured Petri net–based
specification, design and implementation of agent-based
intrusion detection systems. International Journal of
Information and Computer Security 1(2), pp. 109 – 14,
2007

[12] F. Gottschalk, M. H. Jansen-vullers, H. M. W. Verbeek.
Protos2CPN: Using Colored Petri Nets for Configuring
and Testing Business Processes. In Workshop and
Tutorial on Practical Use of Coloured Petri Nets and the
CPN. pp95-110, 2008

[13] K. Jensen. An Introduction to the Theoretical Aspects of
Coloured Petri Nets. A Decade of Concurrency, Lecture
Notes in Computer Science vol. 803, Springer-Verlag ,
pp.230-272, 1994.

[14] A. V. Ratzer, et al., CPN Tools for Editing, Simulating,
and Analysing Coloured Petri Nets.Proceedings of the
24th International Conference on the Application and
Theory of Petri Nets (ICATPN 2003). 2003, pp450-462.

Lizhi Cai was born in Zhejiang Province,
China, 1972. He is currently a associate
professor in Shanghai Key Laboratory of
Computer Software Evaluating & Testing,
Shanghai, China. He is the member of
Special Interest Group of Software
Engineering of CCF. He received his Ph.D.
degree in computer application from
Shanghai University. His current research

interests include quality model, software process, software
testing etc.

474 JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011

© 2011 ACADEMY PUBLISHER

