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Abstract— In this paper, we consider a new type algorithm
for the generalized linear complementarity problem over
a polyhedral cone in engineering and economic equilibrium
modeling(GLCP). To this end, we first develop some equiva-
lent reformulations of the problem under milder conditions,
and then an easily computable global error bound for the
GLCP is established, which can be viewed as extensions of
previously known results. Based on this, we propose a new
type of solution method to solve the GLCP, and show that
the algorithm is global and R−linear convergence. Some
numerical experiments of the algorithm are also reported
in this paper.

Index Terms— GLCP, engineering and economic equilibrium
modeling, global error bound; algorithm, globally conver-
gent, R-linear convergent

I. INTRODUCTION

Let F (x) = Mx + p,G(x) = Nx + q, where
M,N ∈ Rm×n, p, q ∈ Rm. The generalized linear
complementarity problem, abbreviated as GLCP, is to find
vector x∗ ∈ Rn such that

F (x∗) ∈ K, G(x∗) ∈ K◦, F (x∗)�G(x∗) = 0, (1)

where K is a polyhedral cone in Rm and K◦ is its
dual cone. Certainly, for polyhedral cone K, there exist
matrices A ∈ Rs×m, B ∈ Rt×m such that K = {v ∈
Rm | Av ≥ 0, Bv = 0}, and its dual cone K◦ assumes
the following form

K◦ = {u ∈ Rm | u = A�λ1+B
�λ2, λ1 ∈ Rs

+, λ2 ∈ Rt}.

We denote the solution set of the GLCP by X∗ and
assume that it is nonempty throughout this paper.

The GLCP is a direct generalization of the classical
linear complementarity problem and a special case of
the generalized nonlinear complementarity problem which
finds applications in engineering, economics, finance, and
robust optimization operations research (Refs. [1], [2]).
For example, the balance of supply and demand is central
to all economic systems; mathematically, this fundamental
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equation in economics is often described by a comple-
mentarity relation between two sets of decision variables.
Furthermore, the classical Walrasian law of competitive
equilibria of exchange economies can be formulated as
a generalized nonlinear complementarity problem in the
price and excess demand variables ( [2]), and be also
found applications in contact mechanics problems(such as
a dynamic rigid-body model, a discretized large displace-
ment frictional contact problem), structural mechanics
problems, obstacle problems mathematical physics, elas-
tohydrodynamic lubrication problems, traffic equilibrium
problems(such as a path-based formulation problem, a
multicommodity formulation problem, network design
problems), etc. Up to now, the issues of numerical meth-
ods and existence of the solution for the problem were
discussed in the literature (e.g., Refs. [3]–[7]).

Among all the useful tools for theoretical and nu-
merical treatment to variational inequalities, nonlinear
complementarity problems and other related optimization
problems, the global error bound, i.e., an upper bound
estimation of the distance from a given point in Rn to
the solution set of the problem in terms of some residual
functions, is an important one due to the following
reasons: First, the global error bound can not only give
us a help in designing solution methods for it, e.g.,
providing an effective termination criteria, but also be
used to analyze the convergence rate; second, it can be
used in the sensitivity analysis of the problems when
their data is subject to perturbation (Refs. [8], [9]). The
error bound estimation for the GLCP was fully analyzed
(e.g.,Refs. [10]–[12]. This motivates us to consider a
new type algorithm for GLCP based on the error bound
estimation for the GlCP. So, in this paper, we first develop
some equivalent reformulations of the GLCP, and then
we are concentrated on establishing a global error bound
for the GLCP via an easily computable residual function
under mild conditions which can be taken as an extension
of that for GLCP, Based on this, we propose a new
type of solution method to solve the GLCP, and show
that the algorithm is global and R−linear convergence
under milder assumptions. Compared with the existing
solution methods in [6], [7], the conditions guaranteed
for convergence are weaker in this paper.Some numeri-
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cal experiments are also reported, and indicate that this
method has nice stability and high computation efficiency.

Some notations used in this paper are in order. The
norm ‖ · ‖ denote the Euclidean 2-norm, for matrix M ,
the norm ‖M‖F denote Frobenius-norm, i.e., ‖M‖F =
[tr(M�M)]1/2, where the transpose of a matrix M
be denoted by M�, trace of matrix M be denoted
by tr(M�M). Without making confusion, we denote a
nonnegative vector x ∈ Rn by x ≥ 0.

II. SEVERAL EQUIVALENT REFORMULATION OF GLCP

In this section, we will establish an equivalent reformu-
lation of the GLCP. we first give the needed assumptions
for our analysis.

Assumption 1 For the matrices A,B,M,N involved
in the GLCP, we assume that the matrix UN or BM
have full-column rank, where U = (Is, 0s×t)Q

(1,4), Q =
(A�, B�), Q(1,4) ∈ Q{1, 4}, Q{1, 4} is set of Moore-
Penrose generalized inverse matrix.

The following results is straightforward.
Theorem 1 A point x∗ ∈ Rn is a solution of the GLCP

if and only if there exist λ∗1 ∈ Rs, λ∗2 ∈ Rt, such that⎧⎪⎪⎨
⎪⎪⎩

AF (x∗) ≥ 0, BF (x∗) = 0
F (x∗)�G(x∗) = 0
G(x∗) = A�λ∗1 +B�λ∗2
λ∗1 ≥ 0

(2)

To establish an equivalent reformulation of the GLCP,
we need the following conclusion in [13].

Lemma 1 Suppose that the non-homogeneous linear
equation system Hy = b has solution, then y = H(1,4)b
is minimum norm solution of its, where H ∈ Rm×n, b ∈
Rm.

Combining lemma 1, we can establish the following
result.

Lemma 2 Suppose that the equation G(x) = A�λ1 +
B�λ2 holds, then for any x ∈ Rn, the following state-
ments are equivalent.

(1) There exist λ1 ∈ Rs
+, λ2 ∈ Rt such that G(x) =

A�λ1 +B�λ2,
(2)UG(x) ≥ 0, Q̄G(x) = 0, where U =

(Is, 0s×t)Q
(1,4), Q̄ = QQ(1,4) − Im, Q is defined in

Assumption 1.
Proof Set

X1 =

{
x ∈ Rn

∣∣∣ G(x) = A�λ1 +B�λ2

for some λ1 ∈ Rs
+, λ2 ∈ Rt

}
,

X2 = {x ∈ Rn | UG(x) ≥ 0, Q̄G(x) = 0}.

Certainly, to show the assertion, we only need to show
that these two sets are equal.

For any x ∈ X1, there exists λ1 ∈ Rs
+, λ2 ∈ Rt such

that

G(x) = Q

(
λ1

λ2

)
. (3)

By Lemma 1, we obtain

Q(1,4)G(x) =

(
λ1

λ2

)
. (4)

Combining this with (3), one has

(QQ(1,4) − Im)G(x) = 0. (5)

Since λ1 ≥ 0, by (4), one has (Is, 0s×t)Q
(1,4)G(x) ≥ 0.

This, along with (5), yields that x ∈ X2.
On the other hand, for any x ∈ X2, let

λ1 = (Is, 0s×t)Q
(1,4)G(x),

λ2 = (0t×s, It)Q
(1,4)G(x).

Then λ∗1 ∈ Rs
+, λ

∗
2 ∈ Rt. From (5), one has

G(x) = Q[Q(1,4)G(x)]

= (A�, B�)

(
Is 0
0 It

)
Q(1,4)G(x)

= A�λ1 +B�λ2,

i.e., x ∈ X1. The desired result follows.
From this conclusion, we can transform system (2) into

a new system where neither parameter λ1 nor parameter
λ2 is involved. Combining this with Theorem 1, the
GLCP can be equivalently transformed into the following
system: ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

AF (x) ≥ 0,
BF (x) = 0
F (x)�G(x) = 0
UG(x) ≥ 0,
Q̄G(x) = 0

(6)

For this system, by the first and last equalities, one has

F (x)�G(x)
= F (x)�[QQ(1,4)G(x)]

=

[(
A
B

)
F (x)

]�(
Is 0
0 It

)
Q(1,4)G(x)

= (AF (x))�[(Is, 0s×t)Q
(1,4)G(x)].

(7)

Thus, system (6) can be further rewritten as⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

AF (x) ≥ 0,
BF (x) = 0
(AF (x))�[UG(x)] = 0
UG(x) ≥ 0,
Q̄G(x) = 0

(8)

Moreover, from (7), for any x ∈ Rn such that AF (x) ≥
0, UG(x) ≥ 0, it holds that F (x)�G(x) ≥ 0.

Under Assumption 1, we can establish the following
optimization reformulation of the GLCP based on (8) in
the sense that x∗ is a solution of the GLCP if and only
if x∗ is its global optimal solution with the objective
vanishing:

min H(x) = (Mx+ p)�(Nx+ q)
+ ‖B(Mx+ p)‖2 + ρ‖U(Nx+ q)‖2

s.t. x ∈ X
(9)

where µ1, µ2, · · · , µn are the eigenvalue of matrix
M�N +N�M , respectively, constant

ρ >
1

2
{‖µ1‖, ‖µ2‖, · · · , ‖µn‖},

X = {x ∈ Rn |A(Mx+ p) ≥ 0, U(Nx+ q) ≥ 0}.
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Without loss of generality, we assume that the ma-
trix UN has full-column rank. Hence, the Hessian ma-
trix of H(x), i.e., M�N + N�M + 2M�B�BM +
2ρN�U�UN , is positive definite, so H(x) is a convex
function. Furthermore, the feasible set X is a polyhedral.
Thus, problem (9) is a standard strongly convex optimiza-
tion. By the related optimality theory ( [14]), we know
that its solution set coincides with its stationary point
set, i.e., with the solution set of the following variational
inequality problem: find x∗ ∈ X such that

(x− x∗)�(M̄x∗ + q̄) ≥ 0, ∀ x ∈ X, (10)

where

M̄ = M�N +N�M + 2M�B�BM + 2ρN�U�UN,
q̄ = M�q +N�p+ 2M�B�Bp+ 2ρN�U�Uq.

That is, the variational inequality problem (10) is also an
equivalent reformulation of the GLCP.

III. THE ERROR BOUND FOR GLCP

In this section, we would establish the global error
bound of the GLCP, we first need the definition of
projection operator and some relate properties( [15]).

For nonempty closed convex set Ω ⊂ Rn and any
vector x ∈ Rn, the orthogonal projection of x onto Ω,
i.e., argmin{‖y − x‖|y ∈ Ω}, is denoted by PΩ(x).

Lemma 3

(i) 〈PΩ(u) − u, v − PΩ(u)〉 ≥ 0, ∀u ∈ Rn, v ∈ Ω,

(ii) ‖PΩ(u) − PΩ(v)‖ ≤ ‖u− v‖, ∀u, v ∈ Ω.

For (10), e(x) := x − PΩ[x − (M̄x + q̄)] is called
projection-type residual function, and let r(x) := ‖e(x)‖.
The following conclusion provides the relationship be-
tween the solution set of (10) and that of projection-type
residual function( [16]).

Lemma 4 x is a solution of (10) if and only if r(x) = 0.
To establish the global error bound of the GLCP, we

give a conclusion which is easy to deduce.
Lemma 5 Under Assumption 1, for any x ∈ Rn, there

exist constant µmin > 0, µmax > 0 such that

‖x‖2µmin ≤ x�M̄x ≤ µmax‖x‖
2,

where µmin, µmax are the minimum and maximum eigen-
value of matrix M̄ , respectively.

In this following, based on Lemma 3-5, we establish
error bound of the GLCP which is crucial to convergence
of algorithm.

Theorem 2 Suppose that Assumption 1 holds, for any
x ∈ Rn, there exist a solution x∗ of (1) such that

(‖I−M̄‖+1)−1r(x) ≤ ‖x−x∗‖ ≤ (‖M̄‖+1)µ−1
minr(x).

Proof Since x − e(x) = PX [x − (M̄x + q̄)] ∈ X, by
(10),

(x− e(x) − x∗)�(M̄x∗ + q̄) ≥ 0. (11)

Combining x∗ ∈ X with Lemma 3(i), we have

〈x∗ − PX [x− (M̄x+ q̄)], PX [x− (M̄x+ q̄)]
−[x− (M̄x+ q̄)]〉 ≥ 0.

(12)

Substituting PX [x− (M̄x+ q̄)] in (12) by x− e(x) leads
to that

(x− x∗ − e(x))�[e(x) − (M̄x+ q̄)] ≥ 0. (13)

Using (11) and (13), we obtain

[(x − x∗) − e(x)]�[e(x) + M̄(x∗ − x)] ≥ 0,

i.e.,

(x− x∗)�M̄(x∗ − x) + e(x)�[(x − x∗) − M̄(x∗ − x)]
−e(x)�e(x) ≥ 0,

a direct computation yields that

(x− x∗)�M̄(x− x∗)
≤ e(x)�[(x − x∗) + M̄(x− x∗)] − e(x)�e(x)
≤ e(x)�[(x − x∗) + M̄(x− x∗)]
≤ ‖e(x)‖(‖x− x∗‖ + ‖M̄(x− x∗)‖)
≤ r(x)(‖M̄‖ + 1)‖x− x∗‖.

Base on Lemma 5, we have

(x− x∗)�M̄(x− x∗) ≥ µmin‖x− x∗‖2,

so, µmin‖x− x∗‖2 ≤ (‖M̄‖ + 1)r(x)‖x − x∗‖. i.e.,

‖x− x∗‖ ≤ (‖M̄‖ + 1)µ−1
minr(x). (14)

On the other hand, for (10), x ∈ Rn, x∗ ∈ X∗, we
have

r(x) = ‖e(x) − e(x∗)‖
= ‖x− PX [x− (M̄x+ q̄)]
− x∗ + PX [x∗ − (M̄x∗ + q̄)]‖

≤ ‖x− x∗‖
+ ‖PX [x− (M̄x+ q̄)]
− PX [x∗ − (M̄x∗ + q̄)]‖

≤ ‖x− x∗‖ + ‖[x− (M̄x+ q̄)]
− [x∗ − (M̄x∗ + q̄)]‖

= ‖x− x∗‖ + ‖(I − M̄)(x − x∗)‖
≤ (‖(I − M̄)‖ + 1)‖x− x∗‖.

where the first equation is by Lemma 4, the second
inequality is by Lemma 3.1(ii). Thus,

‖x− x∗‖ ≥ (‖I − M̄‖ + 1)−1r(x), (15)

Combining (14) with (15), then the desired result
follows.

Remark. The error bound obtained in Theorem 2 is an
extension of Theorem 4.1, Theorem 4.2 in [10], Theorem
3.1 in [11], Lemma 5.6 in [12] for GLCP.
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IV. ALGORITHM AND CONVERGENCE

In this section, we give a new-type method to solve
GLCP based on the error bound in section 3, and present
the proof for its global R−linear convergence rate. First,
we give some technical lemmas.

Lemma 6 Under Assumption 1, let τ = µ−1
min, we have

x�M̄x ≥ τ‖M̄x‖2. (16)

Proof By Lemma 5, we have

x�M̄x ≥ µmin‖x‖
2

≥ µmin‖M̄‖−2‖M̄x‖2

= µ−1
min‖M̄x‖2.

Lemma 7 Under Assumption 1, and x∗ is a solution
of GLCP, then

〈M̄x+ q̄, x− x∗〉 ≥ τ‖M̄(x− x∗)‖2, ∀x ∈ X,

where τ is defined in Lemma 6.
Proof By Lemma 6, we have

〈(M̄x+ q̄) − (M̄x∗ + q̄), x − x∗〉
= (x− x∗)�M̄(x− x∗)
≥ τ‖M̄(x− x∗)‖2.

Since x∗ is a solution of (10), so for any x ∈ X , we have
〈M̄x∗ + q̄, x− x∗〉 ≥ 0, and the desired result follows.

Now, we formally state our algorithm.
Algorithm 1

Step1. Take ε > 0, γ > µmin

2 , η = tr((I −

M̄)�(I − M̄)), µ0 = tr(M̄)
tr(M̄�M̄)

, and take initial

point z0 = x0 ∈ Rn. Set k
�
= 0;

Step2. Compute

xk+1 = γPX [xk − (M̄xk + q̄)]; (17)

Step3. Take λk+1 ∈ R such that |(I −
λk+1M̄)| 	= 0, and
If η > 1, we take

λ0 > max{
√
n/[ηtr(M̄�M̄)], µ0},

and

max{
√
n/[ηtr(M̄�M̄)], µ0} < λk+1 < η−1λk;

If η < 1, we take

−
√
n/[ηtr(M̄�M̄)] < λ0

< min{
√
n/[ηtr(M̄�M̄)], µ0},

and

−
√
n/[ηtr(M̄�M̄)] < η−1λk < λk+1

< min{
√
n/[ηtr(M̄�M̄)], µ0};

If η = 1, we take λ0 > µ0, and µ0 < λk+1 <
λk;
Let zk+1 = λk+1(xk+1 − xk) + xk .
Step4. If ‖xk+1 − xk‖ ≤ ε stop, otherwise, go

to Step 2 with k
�
= k + 1.

Remark The algorithm is based on the error bound
estimation of problem (1) as discussed below. Obviously,
if xk+1 = xk, combining Theorem 2, then xk is a solution
of GLCP. In the following theoretical analysis, we assume
that Algorithm 1 generates an infinite sequence.

By the definition of projection operator, we can easily
get that problem (17) can be equivalently reformulated as
the following constrained optimization problem

min γ(x− xk)�(x− xk)
+2γ(x− xk)�(M̄xk + q)

s.t. x ∈ X.
(18)

Theorem 3 Under Assumption 1, then the sequence
{zk} converges globally to a solution of (1).

Proof First, we prove that the convergence of sequence
{xk}.

Suppose that xk+1 	= xk and let

ψ(ω) = 2γ(ω − x∗)�(M̄x∗ + q) + γ‖ω − x∗‖2,

where x∗ ∈ X∗. Since M̄ is positive definite, combining
the definition of ψ(ω) with (10), we know that

ψ(ω) ≥ γ‖ω − x∗‖2 ≥ 0. (19)

We claim that the nonnegative sequence {ψ(xk)} is
monotonically decreasing. In fact, since problem (18) can
be equivalently reformulated as the following variational
inequalities, for any ω ∈ X, we have

〈xk+1−xk, ω−xk+1〉+〈M̄xk + q̄, ω−xk+1〉 ≥ 0, (20)

it follows that

ψ(xk) − ψ(xk+1)
= γ(xk − x∗)�(xk − x∗) + 2γ〈M̄x∗ + q̄, xk − x∗〉

− γ(xk+1 − x∗)�(xk+1 − x∗)
− 2γ〈M̄x∗ + q̄, xk+1 − x∗〉

= γ(xk)�xk − γ(x∗)�x∗ − 2γ〈x∗, xk − x∗〉
− γ(xk+1)�xk+1 + γ(x∗)�x∗

+ 2γ〈x∗, xk+1 − x∗〉 + 2γ〈M̄x∗ + q̄, xk − xk+1〉

= γ(xk)�xk − γ(xk+1)�xk+1 + 2γ〈x∗, xk+1 − xk〉
+ 2γ〈M̄x∗ + q̄, xk − xk+1〉

= γ(xk)�xk − γ(xk+1)�xk+1

− 2γ〈xk+1, xk − xk+1〉
+ 2γ〈xk+1 − x∗, xk − xk+1〉
+ 2γ〈M̄x∗ + q̄, xk − xk+1〉

= γ(xk − xk+1)�(xk − xk+1)
+ 2γ〈xk+1 − xk, x∗ − xk+1〉
+ 2γ〈M̄x∗ + q̄, xk − xk+1〉

≥ γ(xk − xk+1)�(xk − xk+1)
− 2γ〈M̄xk + q̄, x∗ − xk+1〉
+ 2γ〈M̄x∗ + q̄, xk − xk+1〉

= γ(xk − xk+1)�(xk − xk+1)
+ 2γ〈M̄xk + q̄, xk − x∗〉
− 2γ〈M̄xk + q̄, xk − xk+1〉

+ 2γ〈M̄x∗ + q̄, xk − xk+1〉
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≥ γ(xk − xk+1)�(xk − xk+1) + 2γτ‖M̄(xk − x∗)‖2

− 〈2γM̄(xk − x∗), xk − xk+1〉
≥ γ‖xk − xk+1‖2 + 2γτ‖M̄(xk − x∗)‖2

− (2γτ‖M̄(xk − x∗)‖2 + 1
2τ ‖x

k − xk+1‖2)
≥ γ‖xk − xk+1‖2 − 1

2τ ‖x
k − xk+1‖2,

where the first inequality is obtained by letting ω = x∗

in inequality (20); the second inequality follows from
Lemma 7 by letting x = xk, and the last inequality
follows from the Cauchy-Schwarz inequality.

Since γ > 1
2τ , we conclude that ψ(xk) − ψ(xx+1) >

0 and thus the nonnegative sequence {ψ(xk)} is strictly
decreasing and convergent. Consequently,

lim
k→∞

‖xk − xk+1‖ = 0. (21)

Moreover, {ψ(xk)} is bounded since it is convergent, and
so is {xk} according to (19). Combining Theorem 2 with
(21), we have

dist(xk, X∗) ≤ (‖M̄‖+1)µ−1
min‖x

k+1−xk‖ → 0 (k → ∞),

where dist(xk, X∗) = ‖xk − x̄k‖, x̄k denote the closest
solution to xk .

Since {xk} is bounded, let {xki} be a subsequence of
{xk} and converges to x̄, for {xki}, we also have

dist(xki , X∗) ≤ (‖M̄‖ + 1)µ−1
min‖x

ki+1 − xki‖ → 0
(i→ ∞),

by Theorem 2, we get x̄ is a solution of GLCP. Since
{ψ(xk)} converges, substituting x∗ in (19) by x̄ leads
to that ψ(xki ) → 0(i → ∞). Thus, ψ(xk) → 0(k →
∞). Using (19) again, we know that the sequence {xk}
converges to x̄.

Secondly, we prove that the sequence {zk} converges
globally to x̄. For any ε > 0, we have

‖zk+1 − x̄‖ = ‖λk+1xk+1 + (1 − λk+1)xk − x̄‖
≤ ‖λk+1xk+1 − λk+1x̄‖
+‖(1 − λk+1)xk − (1 − λk+1)x̄‖
≤ λk+1ε+ (1 − λk+1)ε
= ε.

Lemma 8 Under Assumption 1, according to the ac-
ceptance rule of λk+1 in Algorithm 1, let

β := ‖(I − λkM̄)−1‖F ‖(I − λk+1M̄)‖F ‖(I − M̄)‖F ,

then β < 1.
Proof Since

‖(I − λk+1M̄)‖2
F

= tr((I − λk+1M̄)�(I − λk+1M̄))
= tr(I − λk+1(M̄ + M̄�) + (λk+1)2(M̄�M̄))
= n− 2λk+1tr(M̄) + (λk+1)2tr(M̄�M̄),

Similarly,

‖(I − λkM̄)‖2
F = n− 2λktr(M̄ ) + (λk)2tr(M̄�M̄) ,

then we have

β = ‖(I − λkM̄)−1‖F ‖(I − λk+1M̄)‖F ‖(I − M̄)‖F

= (tr((I−M̄)�(I−M̄)))(n−2λk+1tr(M̄)+(λk+1)2tr(M̄�M̄))

n−2λktr(M̄)+(λk)2tr(M̄�M̄)

= η f(λk+1)
f(λk)

,
(22)

where η = tr((I − M̄)�(I − M̄)),

f(x) = n− 2xtr(M̄ ) + x2tr(M̄�M̄).

According to the acceptance rule of λk+1 in the third step
of Algorithm 1, we have that the following conclusion
hold.

(1) If η > 1, we take

max{
√
n/[ηtr(M̄�M̄)], µ0} < λk+1 < η−1λk,

where µ0 = (tr(M̄ ))/(tr(M̄�M̄)). A direct computation
yields that

ηf(λk+1) < f(ηλk+1) < f(ηη−1λk) = f(λk), (23)

where the first inequality is obtained by

λk+1 >
√
n/[ηtr(M̄�M̄)],

the second inequality follows from the fact that f(x) is
monotonic increasing when λk+1 > µ0. Combining (23)
with (22), we have β < 1.

(2) If 0 < η < 1, we take

−
√
n/[ηtr(M̄�M̄)] < η−1λk < λk+1

< min{
√
n/[ηtr(M̄�M̄)], µ0}.

A direct computation yields that

ηf(λk+1) < f(ηλk+1) < f(ηη−1λk) = f(λk), (24)

where the first inequality is obtained by

−
√
n/[ηtr(M̄�M̄)] < λk+1 <

√
n/[ηtr(M̄�M̄)],

the second inequality follows from the fact that f(x) is
monotonic decreasing when λk+1 < µ0. Combining (24)
with (22), we have β < 1.

(3) If η = 1, we take µ0 < λk+1 < λk , then f(x)
is monotonic increasing. A direct computation yields that
f(λk+1) < f(λk). Combining this with (22), we have
β < 1.

Theorem 4 Under Assumption 1, the sequence {zk}
globally converges to a solution of GLCP R−linearly.

Proof For (18), by using KKT condition, there exist
uk

1 ∈ Rs
+, u

k
2 ∈ Rs

+ such that

2γ(xk+1 −xk)+2γ(M̄xk + q̄) = (AM)�uk
1 +(UN)uk

2 ,

i.e.,
xk+1 = (I − M̄)xk + ck (25)

where ck = 1
2γ ((AM)�uk

1 + (UN)uk
2) − q̄. Using (25),

we have

zk+1 = λk+1xk+1 + (1 − λk+1)xk

= (I − λk+1M̄)xk + λk+1ck.
(26)

Using the technique of (26), we can also get

zk = (I − λkM̄)xk−1 + λkck−1. (27)

By the definition of zk in Algorithm 1, we have

zk = λkxk + (1 − λk)xk−1. (28)
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Pre-multiplying (28) by (I − λkM̄), one has

(I − λkM̄)zk

= λk(I − λkM̄)xk + (1 − λk)(I − λkM̄)xk−1.
(29)

Pre-multiplying (27) by (1 − λk), one has

(1 − λk)zk

= (1 − λk)(I − λkM̄)xk−1 + (1 − λk)λkck−1.
(30)

By (29)-(30), we have

(I − M̄)zk = (I − λkM̄)xk − (1 − λk)ck−1. (31)

Pre-multiplying (31) by (I − λk+1M), one has

(I − λk+1M̄)(I − M̄)zk

= (I − λk+1M̄)(I − λkM̄)xk

−(1 − λk)(I − λk+1M̄)ck−1.
(32)

Pre-multiplying (26) by (I − λkM), one has

(I − λkM̄)zk+1

= (I − λkM̄)(I − λk+1M̄)xk

+λk+1(I − λkM̄)ck.
(33)

A direct computation yields that

(I − λk+1M̄)(I − λkM̄) = (I − λkM̄)(I − λk+1M̄).

Using (33)-(32), and combining the third step of Algo-
rithm 1, we can obtain

zk+1 = (I − λkM̄)−1[(I − λk+1M̄)(I − M̄)zk + ∆k],
(34)

where ∆k = λk+1(I − λkM̄)ck + (1 − λk)(I −
λk+1M)ck−1. Since the sequence {xk} is bounded ac-
cording to the proof above, combining (25), there exist
constant η > 0, α > 0 such that‖ck‖ ≤ η, and

‖(I −λkM̄)−1[(I −λk+1M̄)(I − M̄)x̄+ ∆k]− x̄‖ ≤ α.
(35)

By using (34) and (35), we obtain

‖zk+1 − x̄‖
= ‖(I − λkM̄)−1(I − λk+1M̄)(I − M̄)(zk − x̄)‖
+‖(I − λkM̄)−1[(I − λk+1M̄)(I − M̄)x̄+ ∆k] − x̄‖
≤ ‖(I − λkM̄)−1(I − λk+1M̄)(I − M̄)‖F ‖(z

k − x̄)‖ + α
≤ β‖(zk − x̄)‖ + α
≤ β2‖(zk−1 − x̄)‖ + βα
· · · · · · · · · · · ·
≤ βk+1‖(z0 − x̄)‖ + βkα
= βk+1[‖(z0 − x̄) + α

β ‖].

where β = ‖(I − λkM̄)−1‖F ‖(I − λk+1M̄)‖F ‖(I −
M̄)‖F , combining Lemma 8, we have β < 1, thus, the
sequence {zk} converges to a solution of (1) at globally
and R−linear convergence rate.

V. COMPUTATIONAL EXPERIMENTS

In the following, we will implement Algorithm 1 in
Matlab and run it on a Pentium IV computer. Throughout
our computation, Iter denotes the number of iterations.

d(n) = ‖zk − zk−1‖,

where k denotes the number of iterations when the
algorithm terminates, and γ denotes the parameter we
take.

Example 1 This problem is a linear complementarity
problem (LCP) used by Harker and Pang ( [17]), in which
F (x) = Mx+ p, where

M =

⎛
⎜⎜⎜⎜⎜⎝

1 2 2 · · · 2 2
0 1 2 · · · 2 2
...

...
...

...
...

...
0 0 0 · · · 1 2
0 0 0 · · · 0 1

⎞
⎟⎟⎟⎟⎟⎠ , p =

⎛
⎜⎜⎜⎝

−1
−1

...
−1

⎞
⎟⎟⎟⎠ .

For this problem, we take the initial point x0 =
(1, 1, · · · , 1)� and parameter ε = 10−18, Harker and Pang
( [17]) used the damped-Newton method (DNA), and
He and Yang ( [18]) used the projection and contraction
method(PCA), and Han ( [19]) used a hybrid general-
ized proximal method(HGPA), and Wang ( [7]) used the
Newton-type method (NTA). The results for the above
four methods and several values of the dimensions n are
summarized in Table 1. In Table 2, we summarize the
results of our algorithm for several values of dimensions
n. From Table 1 and Table 2, we can conclude that our
algorithm excels the other four methods, and it has nice
stability and high computation efficiency.

To illustrate the stability of our algorithm, under n =
64 and the initial point x0 is produced randomly in (0,5),
we use it to solve example 1, and the results are listed in
Table 3. Table 2 and Table 3 indicate that our algorithm
is not sensitive to the change of initial point and the
dimension, thus it is very stable.

TABLE 1.

Numerical Results by DNA, PCA, HGPA, NTA

for Example 1

Dimension 8 16 32 64 128
DAN iter.num. 9 20 72 208 > 300
PCA iter.num. 24 25 27 29 32

HGPA iter.num. 7 9 10 11 13
NAT iter.num. 13 12 18 99 99

TABLE 2.

Numerical Results of Our Algorithm for Example 1

Dimension 8 16 32 64 128 256
iter.num. 5 6 7 8 9 10

γ 1.1 1.2 1.2 1.2 1.2 1.2
d(n) 0 0 0 0 0 0

TABLE 3.

Numerical Results of Our Algorithm by Random Initial

Point for Example 1

Trial 1 2 3 4 5
iter.num. 9 9 9 9 9

d(n) 0 0 5.4738 × 10−48 0 0
Trial 6 7 8 9 10

iter.num. 9 9 9 9 9
d(n) 0 0 0 0 0
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Example 2 This example is a general variational inequality
used by Noor and Wang ( [20]). Let F (x) = Mx + p, where

M =

⎛
⎜⎜⎜⎜⎜⎝

4 −2 0 · · · 0
1 4 −2 · · · 0
0 1 4 · · · 0
...

...
...

...
...

0 0 0 · · · −2
0 0 0 · · · 4

⎞
⎟⎟⎟⎟⎟⎠ , p =

⎛
⎜⎜⎜⎜⎜⎝

1
1
1
...
1
1

⎞
⎟⎟⎟⎟⎟⎠ ,

the domain set C = {x ∈ Rn | 0 ≤ xi ≤ 1, i = 1, 2, · · · , n}.
By Theorem 2.2 in [12], the problem in Example 2 can be

rewritten as the following GLCP:

x ∈ C, F (x) ∈ C
◦
, x

�
F (x) = 0,

where C◦ is dual cone of set C.
For this test problem, table 4 give the results for this ex-

ample with starting point x0 = −M−1p and parameter ε =
10−15, γ = 6 for different dimensions n. Compared with the
results of Table 4.2 in [20], we can conclude that our algorithm
excels method in [20].

TABLE 4.

The Numerical Experiments Result for Example 2

Dimension 10 20 50
iter.num. 1 1 1

CPU Time 0 0.0310 0.1880
d(n) 0 0 0

Dimension 80 100 200
iter.num. 1 1 1

CPU Time 0.6570 1.2500 14.6410
d(n) 0 0 0

Example 3 This example is GLCP used by Wang ( [21]). Let

x ∈ K, G(x) =

(
4 2 2
2 4 0
2 0 2

)
x +

(
−8
−6
−4

)
∈ K0

,

where K = {x ∈ R3 |Ax ≥ p}, where

A
� = −

(
1 1 0 0 −1 0 0
1 0 1 0 0 −1 0
1 0 0 1 0 0 −1

)
,

p
� = −

(
3, 1, 1, 1, 0, 0, 0

)
It is easy to verify that its polar cone K◦

Table 5 list the numeric results of Algorithm 1 with different
starting points. We take parameter ε = 10−15, γ = 6.5.
Compared with the results of Table 2 in [21], we can conclude
that our algorithm excels the method in [21], and it has nice
stability

To illustrate the stability of our algorithm, the initial point x0

is produced randomly in (0,5), we use it to solve example 3, and
the results are listed in Table 6. Table 5 and Table 6 indicate
that our algorithm is not sensitive to the change of initial point,
thus it is very stable.

TABLE 5.

The Numerical Experiments Result for Example 3

Starting point Iter.num. d(n) CPU time
(0, 0, 0)� 1 4.5776 × 10−16 0.0160
(1, 0, 0)� 2 0 0
(0, 1, 0)� 1 7.1089 × 10−16 0.0160
(0, 0, 1)� 2 0 0

TABLE 6.

The Numerical Experiments Result for Random Intinal Point

of Example 3 (1e-16)

Trial 1 2 3 4 5
Iter.num. 2 1 1 1 1

d(n) 0 6.3777 8.1584 6.3777 8.1584
CPU time 0 0.0160 0 0 0

Trial 6 7 8 9 10
Iter.num. 1 2 1 1 1

d(n) 8.1584 0 8.1584 4.1541 6.8439
CPU time 0.0150 0 0.0150 0 0

VI. CONCLUSION

We present an easily computable global error bound for the
GLCP, which can be viewed as extensions of previously known
results. Based on this, we also propose a new type of solution
method to solve the GLCP, and show that the algorithm is global
and R−linear convergence.

ACKNOWLEDGMENT

The author wish to give their sincere thanks to the editor
and the anonymous referees for their valuable suggestions and
helpful comments which improved the presentation of the paper.

REFERENCES

[1] M.C. Ferris and J.S. Pang, ”Engineering and economic
applications of complementarity problems”, Society for in-
dustrial and applied mathematics, 39(4), pp. 669-713, 1997.

[2] L. Walras, Elements of Pure Economics, Allen and Unwin,
London, 1954.

[3] R. Andreani, A. Friedlander and S.A. Santos, ”On the
resolution of the generalized nonlinear complementarity
problem”, SIAM Journal on Optim., 12,pp. 303-321, 2001.

[4] R. Andreani, A. Friedlander, S.A. Santos, ”Solving gener-
alized nonlinear complementarity problems: Numerical ex-
periments on polyhedral cones”, Technical Report, IMECC,
State University of Campinas, Campinas, Brazil, 2001.

[5] F. Facchinei and J.S. Pang, Finite-Dimensional Variational
Inequality and Complementarity Problems, Springer, New
York, 2003.

[6] Y.J. Wang, F.M. Ma and J.Z. Zhang, ”A nonsmooth L-M
method for solving the generalized nonlinear complemen-
tarity problem over a polyhedral cone”, Appl. Math. Optim.,
52(1), pp. 73-92, 2005.

[7] X.Z. Zhang, F.M. Ma and Y.J. Wang, ”A Newton-type
algorithm for generalized linear complementarity problem
over a polyhedral cone”, Appl. Math. Comput., 169(1), pp.
388-401, 2005.

[8] J.S. Pang, ”Error bounds in mathematical programming”,
Math. Programming, 79, pp.299-332, 1997.

[9] M.V. Solodov, ”Convergence rate analysis of iteractive
algorithms for solving variational inequality problems”,
Math.Programming, 96(Ser.A), pp. 513-528, 2003.

[10] H.C. Sun, Y.J. Wang, L.Q. Qi, ”Global Error Bound for
the Generalized Linear Complementarity Problem over a
Polyhedral Cone”, J. Optim. Theory Appl., 142, pp.417-429,
2009.

[11] H.C. Sun, ”A quadratically convergent algorithm for the
generalized linear complementarity problem without nonde-
generate solution,” Proceedings of the Second International
Conference on Intelligent Information Management Systems
and Technology Yantai, P.R.China, pp. 153-156, 2007, 10.

840 JOURNAL OF SOFTWARE, VOL. 5, NO. 8, AUGUST 2010

© 2010 ACADEMY PUBLISHER



[12] H.C. Sun, H.C. Zhou, Q.J. Ren, ”A projection-type method
for the generalized linear complementarity problem over a
polyhedral cone”, International Journal of pure and applied
mathematics, 3, pp. 321-336, 2007.

[13] Cheng Y.P., Matrix theory, Northwestern polytechnical
university press, 2000, 338 (In Chinese).

[14] Y.J. Wang, N.H. Xiu, Theory and algorithms for nonlinear
programming, Shanxi science and technology press, 2004
(In Chinese).

[15] E.H. Zarantonello, Projections on Convex Sets in Hilbert
Space and Spectral Theory, Contributions to Nonlinear
Functional Analysis. New York: Academic Press, 1971.

[16] D. Kinderlehrer and G. Stampacchia, An introduction to
variational inequalities and their applications, New York:
Academic Press, 1980.

[17] P.T. Harker, J.S. Pang, ”A damped-Newton method for the
linear complementarity problem”, Lectures in Appl. Math.,
26, pp. 265-284 1990.

[18] B.S. He and H. Yang, ”A neural-Network model for the
linear asymmetric variational inequalities”, IEEE Transac-
tion on Neural Networks, 11, pp. 3-16, 2000.

[19] D.R. Han, ”A new hybrid generalized proximal point
algorithm for variational inequality problems”, J. of Global
Optim., 26, pp. 125-140, 2003.

[20] M.A. Noor, Y.J. Wang, N.H. Xiu, ”Projection iterative
schemes for general variational inequalities”, Journal of
Inequalities in Pure and Applied Mathematics, 3(3), article
34, 2002.

[21] Y.J. Wang, ”A new projection and contraction method for
varitional inequalities”, Pure Math. and Appl., 13(4), pp.
483-493, 2002.

Hongchun Sun graduated from Qufu Nor-
mal University(QNU), Qufu, Shandong, P.R.
China, in 1990, and received his B. Sc. degree
in Mathematics, and received his M. Sc. degree
in Operations and Cybernetics from QNU in
2005, respectively.

He is currently an associate professor in the
Department of Mathematics at Linyi Normal
University, China. His research interest covers
numerical analysis and algorithm designing for
nonlinear optimization.

JOURNAL OF SOFTWARE, VOL. 5, NO. 8, AUGUST 2010 841

© 2010 ACADEMY PUBLISHER


