
Testing Software Assets of Framework-Based
Product Families during Application Engineering

Stage

Jehad Al Dallal
Kuwait University/Department of Information Sciences, Kuwait

Email: jehad@cfw.kuniv.edu

Paul Sorenson
University of Alberta/Department of Computing Science, Edmonton, Alberta

Email: sorenson@cs.ualberta.ca

Abstract— An application framework provides reusable
design and implementation for a family of software systems.
At the application engineering stage, application developers
extend framework assets to build their particular
framework instantiations. Typically, framework software
assets are tested before being used. However, achieving
complete coverage of a system under test is impossible or at
least impractical. Therefore, framework software assets can
have undiscovered errors that appear in some instantiations.
During the application engineering stage, it is important to
identify the framework use cases that are used in the
instantiation but not covered during the framework testing
stage.

In this paper, a testing model that considers retesting
framework assets during the application engineering stage is
proposed. In addition, a test-case-reusing technique is
introduced to identify uncovered framework use cases and
cover them by reusing the test cases already built during the
framework domain engineering stage. Empirical studies are
reported to show the adequacy of the proposed framework
test-case-reusing technique in terms of reducing testing time
and effort, and a supporting tool that automates the
proposed test-case-reusing technique is developed and
introduced.

Index Terms— hooks, object-oriented framework, domain
engineering, application engineering, object-oriented
framework instantiation testing, test case reusability

I. INTRODUCTION

Software engineering aims at developing techniques
and tools that reduce the software development time
while simultaneously enhancing the product quality.
Using object-oriented frameworks is an appealing way to
speed up development of a software product family [1]. A
software product family is a set of software products that
share common features [2]. An application framework is
the reusable design and implementation of a system or
subsystem [3]. It contains a collection of reusable
concrete and abstract classes. These classes are referred
to in this paper as framework assets. The framework

design provides the context in which framework assets
are used. The framework itself is not complete. Object-
oriented framework engineering is divided into separate
domain and application engineering tasks. During domain
engineering, the framework assets are produced. During
application engineering, the users of the framework
complete or extend the framework assets to build their
particular instantiations instead of developing the
applications from scratch. Design for reusability is a
costly and time-consuming task. However, reusing the
framework design and code reduces application
development time and cost considerably. As a result,
there is a high probability that the cost and time spent
during the framework domain engineering stage will be
recouped after producing a few framework applications.

Typically, reusing test cases instead of creating them
from scratch reduces testing time and effort. To use
reusable test cases for testing a specific application, a
mechanism is required to identify the applicable test
cases. For the applicable test cases, a technique is
required to identify whether the test cases can be used as-
is or must be modified or extended. If the test cases have
to be modified or extended, the way to perform such
modification or extension should be easy and
straightforward. The identification and use of reusable
test cases must be systematic and fully or at least semi-
automated. The cost of reusing the test cases must be
much lower than the cost of building the test cases from
scratch; otherwise, application developers will prefer to
build their own test cases.

Testing the framework during the domain engineering
stage is essential. If the framework code contains errors,
the errors will be passed on to the instantiations
developed from the framework. Several techniques have
been proposed to test frameworks during the framework
development stage (e.g., [4], [5], and [6]). In these testing
techniques, different possible framework use cases and
input data are exercised. Tevanlinna et al. [1] mention
that during the application engineering stage, it is hard to
rely on the testing performed during the framework

JOURNAL OF SOFTWARE, VOL. 3, NO. 5, MAY 2008 11

© 2008 ACADEMY PUBLISHER

domain engineering stage. When the framework is
instantiated, some framework input data and application-
specific framework-use-cases not covered during the
framework testing stage can be applied by the framework
instantiation. When these input data and use cases are
applied, some undetected framework errors can appear
and cause the framework instantiation to function
improperly. Therefore, it is important to reconsider
framework testing during the application engineering
stage. Solving this problem requires resolving the
following two issues:

1. Identifying the framework input data and use cases
that are used in the instantiation and not covered during
the framework domain engineering stage.

2. Proposing an adequate test-case-reusing technique to
test the uncovered framework input data and use cases.
The technique reuses the testing assets (e.g., test suites
and testing models) used during the framework testing
stage, which reduces the testing effort.

This paper addresses the above two issues. The
traditional framework testing process (e.g., [4], [5], and
[6]) is performed during the domain engineering stage. In
this process, demo applications and test assets are created
and used to test the framework. The framework is not
further tested at the application engineering stage. In this
paper, the framework testing process model is extended
to consider testing the application-specific framework
input data and use cases that are not covered during the
domain engineering stage. In the extended model, when
the classes that use the framework classes are developed
during the application engineering stage, the framework
test input data and use cases not covered by the
framework test assets are detected. The classes that use
the framework classes are called Framework Interface
Classes (FICs) [7]. The framework test assets are
customized and reused to retest the framework and cover
the nontested input data and use cases. The customized
test cases are added to the framework database such that
at any time the framework database contains the test
assets created during the framework domain engineering
task and the test assets added during the application
engineering stage of the previously developed
instantiations. This incremental model reduces the
framework testing effort each time a new framework
instantiation is developed. In addition, the extended
model increases confidence in the framework as more
instantiations are developed. The extended framework
testing process model is shown in Fig. 1. In this figure,
the testing process performed at the application
engineering stage models the actual extension to previous
work.

The technique introduced in this paper extends a
framework testing technique called Testing Framework
Through Hooks (TFTH) [5]. First, the paper explains how
to identify the framework input data and use cases that
are used in the instantiation and not covered during the
framework testing stage. Second, the paper introduces a
test-case-reusing technique that considers the reusability
of the framework testing assets to build test cases that test
the used portion of the framework. Experiments applying

the introduced technique to two framework instantiations
were conducted. The experiments show the adequacy of
the proposed framework test-case-reusing technique in
terms of reducing testing time and effort. As in [8], the
technique introduced in this paper assumes that the
framework test assets are provided with the framework. A
supporting tool called JFramework Re-Tester is
developed to automate the introduced testing technique.

Figure 1. The extended framework testing process model

The paper is organized as follows. Section II discusses

background and related research. Section III introduces
the test-case-reusing technique that reuses test cases to
test the framework part of the instantiation. An
experiment showing the adequacy of the introduced test-
case-reusing technique in terms of reducing testing time
and effort is described in Section IV. Section V discusses
the automation of the proposed test-case-reusing
technique. Finally, Section VI provides conclusions and a
discussion of future work.

II. BACKGROUND AND RELATED RESEARCH

Testing Frameworks Through Hooks (TFTH) [5] is a
testing technique that tests hook-documented frameworks
at system level. This section gives an overview of object-
oriented framework paradigm, TFTH technique, and
other related work.

A. Object-Oriented Framework Paradigm
An application framework provides a reusable design

and implementation for a family of software systems [3].
During application engineering stage, users of the
framework complete or extend the framework assets to
build their particular instantiations. When the framework
is used during the application engineering stage,
developers build two types of classes: (1) classes that use
the framework classes and (2) classes that do not. Classes
that use the framework classes are called FICs because
they act as interfaces between the framework classes and
the second type of classes created by application
developers. Places at which users can add their own
classes are called hook points [9, 10].

In [9] and [10], the issue of documenting the purpose
of a framework and how it is intended to be used with
hooks is described and formalized. The concept of hook

12 JOURNAL OF SOFTWARE, VOL. 3, NO. 5, MAY 2008

© 2008 ACADEMY PUBLISHER

description is introduced. The hook description explains
how to extend or customize part of the framework to
build an instantiation. Froehlich [10] provides a special-
purpose language and grammar in which the hook
description can be written. Each hook description consists
of the following: (1) a unique name, (2) the requirement
(i.e., the problem the hook is intended to help solve), (3)
the hook type, (4) the other hooks required to use this
hook, (5) the components that participate in this hook, (6)
the preconditions (i.e., constraints on the parameters [or
the context] that must be true before the hook can be
used), (7) the changes that can be made to develop the
instantiation, (8) the postconditions (i.e., constraints on
the parameters that must be true after the hook has been
used), (9) a general comment section. It is not necessary
to have all the above parts for each hook.

Fig. 2 shows a hook description example for creation
of an account in a banking framework. The user of the
framework creates a NewAccount class that subclasses the
Account class which is included in the framework. The
hook Initialize Account creates an init method that should
be included in NewAccount class and called when an
account is constructed. In init method, the account
currency is selected. There are three prebuilt classes in
the framework for money: USMoney, EURMoney, and
Money. Moreover, the user has to specify the bank
branches in the system.

Figure 2. Description of the Initialize Account hook of a banking

framework

B. TFTH Framework Testing Technique
TFTH is a testing technique that tests frameworks at

system level. It tests that the framework use cases are
implemented correctly. FICs extend or use framework
classes to implement the use cases; therefore, TFTH tests
frameworks through FICs, which are composed of hook
methods. TFTH tests the framework use cases by
enacting the hook methods through which the framework
use cases are performed. Hook descriptions specify the
behaviors of the FICs, and they are used to construct the
FIC Hook State Transition Diagram (HSTD)
automatically [7]. The HSTD models FIC behavior and
consists of nodes and direct links. Each node represents a
state (i.e., a set of instance-variable value combinations of
the class object) and each link represents a transition
caused by an event. There are two types of links: solid

and dotted, which represent transitions associated with
explicit and implicit events, respectively. Implicit events
are calls to methods called implicitly by other methods.
The transition labels have the following form:

event-name argument-list [guard predicate]/action-
expression

Fig. 3 shows the HSTD of an account banking FIC.
The HSTD contains two special states: alpha and omega,
to represent the states of the object before being
constructed and after being destructed, respectively.
Moreover, the HSTD contains the Open, Overdrawn,
Inactive, and Frozen states to model the rest of the states
of the object. Since the event NewAccount() invokes the
init event defined in the banking framework hooks, an
initializing state is added. Moreover, a transition
(represented by dotted link) associated with the implicit
call of init is added from the initializing state to the Open
state.

Name: Initialize Account
Requirement: Initialize an account.
Type: Template
Uses: None
Participants: Account(framework), NewAccount(app), Amoney(app);
Preconditions: Subclass NewAccount of Account;
Changes: New operation NewAccount.init();
 Choose AM from (Money, USMoney, EURMoney);
 Create Object Amoney as AM() in MyAccount.init();
 Create Object branches as Branches() in NewAccount.init();
 Repeat as necessary {
 Acquire BranchName: string
 NewAccount.init() -> branch.addBranch(BranchName);}
Postconditions: Operation NewAccount.init();
 NewAccount.branches!=Null;
Comments:

Figure 3. HSTD of the NewAccount object defined in the banking
framework hooks

Hook descriptions define how to construct FIC

methods. These methods are called hook methods. For
example, in the changes section of the Initialize Account
hook (Fig. 2), the way to construct the init method is
described.

Each hook method (i.e., a method defined in hook
descriptions) is modeled by a Construction Flow Graph
(CFG), a graphical representation of the control structure
of the construction sequence of the hook method
contents. Fig. 4 shows the CFG of the init() method
described in the Initialize Account hook (Fig. 2) of the
banking framework. The hook statement ‘Create Object
Amoney …’ is represented by three nodes because there
are three possible framework money classes: Money,
USMoney, and EURMoney.

Typically, FICs consist of multiple hook methods.
Each hook method introduced in the hook description can
have different possible implementations. Therefore, each
FIC can have multiple different possible
implementations. The FIC implementations are
constructed by considering the combinations of possible
implementations of hook methods. A demo instantiation
that can be used in the testing process consists of an

JOURNAL OF SOFTWARE, VOL. 3, NO. 5, MAY 2008 13

© 2008 ACADEMY PUBLISHER

implementation of one or more FICs and the framework
code.

Figure 4. The CFG of the init() method defined in the Initialize Account

hook

TFTH technique generates a framework test suite
automatically in seven steps, as follows:
1. Determine the FICs.
2. Construct the HSTDs of the FICs.
3. Produce a round-trip path tree for each HSTD using
Binder’s procedure [4]. In round-trip path coverage,
transition sequences that start and end with the same state
and simple paths from alpha to omega state are covered.
A simple path includes only an iteration of a loop, if a
loop exists in some sequence. Fig. 5 shows the round-trip
path tree of the HSTD shown in Fig. 3.
4. Construct a CFG for each hook method.
5. Generate test data for all parameters of the hook
methods.
6. Generate hook method possible implementations. Each
implementation of a hook method exercises a
combination of test data, generated in Step 5, in a CFG
simple complete path or extreme complete path. A
complete path is a path that starts at the graph's entry
node and ends at the graph's exit node. A simple complete
path is a complete path that includes at most an iteration
of a loop, if a loop exists in some sequence. An extreme
complete path is a complete path that includes at least
(maximum number of iterations of a loop –1), if a loop
exists in some sequence.

Figure 5. The round-trip path tree of the HSTD shown in Fig. 3

7. Produce framework test cases. Each test case exercises
a single round-trip path and covers one possible
combination of implementations of hook methods called
in the round-trip path. A complete framework test suite
contains test cases that cover all combinations of
parameter test data in all simple and extreme complete
paths of the CFGs and simple complete round-trip paths
in all round-trip path trees.

C. Other Related Work
Several recent research studies address the problem of

object-oriented testing at different levels in general (e.g.,
[4] and [11-16]). Some testing techniques are specifically
proposed to test object-oriented frameworks and their
instantiations (e.g., [4-7, 17-27]).

Binder [4] suggests two different approaches for
testing frameworks according to the availability of
application-specific instantiations. The first approach,
called New Framework Test, develops test cases for a
framework that has few, if any, instantiations. The
second approach, called Popular Framework Test,
develops test cases for an enhanced version of a
framework that has many application-specific
instantiations. Tsai et al. [17] discuss the issues of testing
instantiations developed with design patterns using
object-oriented frameworks. The paper addresses testing
from two viewpoints: that of framework developers, and
that of instantiation designers. Framework developers test
that the extensible patterns do allow the instantiation
developer to extend the framework functionality. The
instantiation designers should verify that the extension
points are properly coded and tested. Wang et al. [18]
propose providing the framework with reusable test cases
that can be applied during the instantiation development
stage. However, these test cases are limited to testing that
the inherited framework features work correctly in the
context of the instantiation classes that inherit them. Al
Dallal [7, 26] and Al Dallal and Sorenson [19-22, 25]
propose a technique to test the FICs at class level using
reusable test cases built during the framework
development stage. Al Dallal [23] proposes a technique to
test the frameworks hook methods. The technique builds
demo implementations for the hook methods and test
suites to test the demo implementations. Kauppinen et al.
[6] propose a criterion to evaluate the hook coverage of a
test suite used to test hook methods. RITA [28] is a
software tool that supports framework testing and
automates the calculation of the hook method coverage
measure. Al Dallal and Sorenson [24] propose a
methodology to estimate the coverage of the cluster-
based reusable test cases for framework instantiations.
None of the techniques introduced for testing object-
oriented frameworks and their instantiations considers
retesting the framework at the application engineering
stage.

Several techniques are introduced to test software
product line and product family. In a software product
line, variation points are points at which the products of a
product family differ (i.e., each product has a different
implementation, which is called a variant, for an abstract

14 JOURNAL OF SOFTWARE, VOL. 3, NO. 5, MAY 2008

© 2008 ACADEMY PUBLISHER

class associated with a variant point). Cohen et al. [29]
suggest using combination testing strategies (e.g., [30]) to
build test cases to test product line variants. In
framework-based software product families, the variation
points are the hook points, and implementations of the
FICs are the variants. Tevanlinna et al. [1] identify four
different strategies for modeling product family testing.
The first strategy is to test product by product without
considering the benefits of reuse (e.g., [31]). The second
strategy tests the first product individually and the
following products incrementally using regression testing
techniques. The third strategy builds reusable test assets
extensively during the domain engineering stage. These
test assets are reused as-is or customized during the
application engineering stage to test the product-specific
aspects [8]. The fourth strategy applies unit testing in the
domain engineering stage and integration, system, and
acceptance testing at the application engineering stage.
Only the first strategy considers retesting the assets each
time an application is developed. However, in this
strategy, the assets are retested from scratch and no
reusability of testing previously applied is considered.
The strategy introduced in this paper resembles the third
product family testing strategy. The difference is that, in
the third strategy, the reusable test assets are used to test
the product-specific aspects, whereas, in our strategy, the
reusable test assets are used to test the framework itself
(i.e., the product core assets).

The testing areas for which reusability of test cases for
object-oriented software are proposed and discussed
include regression testing, testing subclasses, testing the
use of class libraries, testing software product-lines, and
testing object-oriented framework applications. An
overview of research work addressing the last two areas
is given above.

In regression testing [32-36], a modified version of the
software is tested to provide confidence that the changed
parts are behaving as intended and that the unchanged
parts are not affected by the modifications in an
unforeseen way. The test suite used to test the original
version of the software or part of it is reused to test the
modified version. In attempting to reuse the test suite or
part of it, two problems have to be tackled: which test
cases of the original test suite can or should be used to
test the modified version, and which new test cases must
be developed to test parts of the modified software [35].
In subclass testing [37], the superclass test suite or part of
it must be reapplied in order to gain confidence that the
inherited superclass features work correctly in the context
of the subclass. In testing the use of the class libraries and
the frameworks, Binder [4] states that the class library
user and the framework user can reuse the class libraries
test suite and the framework test suite, respectively, at the
cluster-testing level without introducing new specific
approaches.

The work introduced in this paper is different from
those presented earlier in the following ways:
1. It determines the nontested framework part of the
instantiation.

2. It provides test-case-reusing technique to test the
framework part of the instantiation.
3. The introduced test-case-reusing technique selects test
cases that test only the nontested part of the framework,
reducing required testing time and effort.
4. The introduced test-case-reusing technique reuses the
testing assets already built to test the framework during
the domain engineering stage, reducing required testing
time and effort.

III. THE FRAMEWORK PART TEST-CASE-REUSING
TECHNIQUE

In a former case study [7], we observed that more than
half the instantiation classes are framework classes and
the rest are either FICs or other instantiation classes.
Therefore, when testing the instantiation, it is important
to consider testing its framework part. The frameworks
are already tested during their development process, but
this testing is incomplete. Thus, it is useful to focus the
testing on the framework part that is used in the
instantiation but not covered during the framework
testing stage. The test-case-reusing technique introduced
in this paper consists of three steps, as follows:

Step 1: Identify the nontested hook methods
In TFTH technique, during the framework

development stage, developers use CFGs to build
different implementations of the hook methods through
which the framework is tested. During the application
engineering stage, developers implement the hook
methods. The framework part of the instantiation must be
tested using the hook methods implemented by the
instantiation developers and not using the different
implementations of the hook methods created using the
CFG.

In TFTH technique, implementations of the hook
methods are created from the CFG such that the CFG is
branch covered. If the CFG contains a loop, the loop is
iterated at most once. When the instantiation is
developed, a loop in a CFG can be iterated more than
once. Such a case is not used in testing the framework
during the framework testing stage and must be used
during the instantiation testing stage.

In addition, during the instantiation development stage,
the developers can assign specific values for the
parameters of the methods used in the hook methods or
leave such parameters dynamic (i.e., the value can be
assigned at run time). For example, when the init method
is created using the Initialize Account hook given in Fig.
2, the instantiation developer can add branches to the
system using the code statement

branch.addBranch(BranchName);
When this code statement is used, the instantiation

developer can decide to assign a value to the
BranchName parameter or leave the parameter dynamic.
Most likely, the values assigned to the parameters are
different than the test data applied during the framework
testing stage. In this case, when testing the framework
during the application engineering stage, the actual
parameter values have to be considered.

JOURNAL OF SOFTWARE, VOL. 3, NO. 5, MAY 2008 15

© 2008 ACADEMY PUBLISHER

Finally, the framework is not tested during the
framework domain engineering stage through extensible
hook methods (i.e., open hook methods). This is because
the implementation of such methods is left open for the
instantiation developers. These methods are implemented
during the application engineering stage and must be used
to test the framework during the instantiation testing
stage. As a result, the framework has to be tested during
the application engineering stage through four types of
hook methods:
(1) A hook method constructed by iterating more than
once in a CFG loop.
(2) A hook method that includes parameters assigned to
specific values during the application engineering stage.
(3) An open hook method.
(4) A hook method that includes a call for one of the
above three types of hook methods

Such methods are marked untested and they have to be
used in the test cases. Other methods are marked tested
and they can be ignored when testing the framework
during the application engineering stage unless there is a
relation between such methods and the other methods
marked untested.

Step 2: Remodel the round-trip path tree
The round-trip path tree is generated during the

framework domain engineering stage using the HSTD.
The HSTD includes transitions that are associated with
hook method calls. Not all hook methods are
implemented in each instantiation. The methods that are
not implemented have to be ignored. In addition, some of
the hook methods are marked tested in Step 1 and they
can be ignored unless there is a relation between such
methods and the other methods marked untested. The
predicate of an HSTD transition can depend on a hook
method not implemented in the instantiation. Such a
transition has to be ignored; otherwise, reusing the
corresponding test cases causes a compilation error
indicating that the method is not defined. Finally,
predicates of HSTD transitions can depend on variables
assigned to specific values during the application
engineering stage. If these values cause the predicate to
evaluate to false, the transition cannot be executed and
must be ignored.

Ignoring a transition in an HSTD causes ignoring of its
corresponding transition in the round-trip path tree. When
the round-trip path tree is constructed during the
framework domain engineering stage, each transition in
the HSTD is covered once. A state in the HSTD is
covered a number of times equal to the number of its
incoming transitions. As a result, a state in the HSTD can
be represented by more than one corresponding state in
the round-trip path tree. These corresponding states have
the same identifier. For example, the Frozen state shown
in Fig. 3 is represented three times in the round-trip path
tree given in Fig. 5. Note that the Frozen state in Fig. 3
has three incoming transitions.

When a hook method is not implemented in the
instantiation, transitions associated with it in the HSTD
have to be deleted because they cannot be executed.
Deleting a transition from the HSTD can result in a

disjoint graph or unreachable states. For example, the
developer of the banking framework instantiation can
decide not to implement the freeze and unfreeze methods
because the instantiation specifications do not require
having frozen accounts. Deleting transitions associated
with nonrequired methods from the HSTD causes a
disjoint graph that includes the Frozen state and an
associated transition. Deleting the corresponding transit-
ions from the round-trip path tree does not cause any
reachability problems. In this case, any resulting disjoint
graphs and unreachable states can be deleted because
they do not represent any necessary testable cases.

However, in some cases, deleting a transition from the
HSTD does not result in creation of a disjoint graph or
unreachable states. For example, in a banking framework
instantiation, the developer chooses not to implement the
transition originating from the Open state and ending at
the Inactive state. This causes deletion of the transition
from the HSTD given in Fig. 3. The Inactive state of the
HSTD is still reachable through the Frozen state.
However, deleting the corresponding transition and the
resulting disjoint graphs from the round-trip path tree
shown in Fig. 5 causes the outgoing transitions from the
Inactive state to be unrepresented in the round-trip path
tree. Some of these transitions can be associated with
hook methods marked untested and these transitions must
be used when testing the framework during the
application engineering stage. To solve this problem, the
outgoing transitions from a state that has been reached by
a deleted transition must be reached by another path. In
the round-trip path tree, this can be achieved by
redirecting the transitions to be initiated from another
state that has the same identifier as the destination state of
the deleted transition. Fig. 6 illustrates the two deletion
scenarios.

The first scenario occurs when a transition is deleted,
but no disjoint graphs or unreachable states are created in
the HSTD. For example, when transition A→B is deleted
from the HSTD given in Fig. 6(i), the resulting HSTD
remains a connected graph in which all states are
reachable. Therefore, all remaining states and transitions
represented in the resulting HSTD have to be represented
in the remodeled round-trip path tree. Deleting transition
A→B from the corresponding round-trip path tree given
in Fig. 6(ii) creates a disjoint graph consisting of states B
and D and the transition between them. This disjoint
graph must be reconnected to the round-trip path tree by
redirecting the transition to be initiated from state B, as
shown in Fig. 6(iii). Note that the remodeled-round-trip
path tree represents all the states and transitions contained
in the remodeled HSTD. The second scenario occurs
when a disjoint graph or unreachable state is created. For
example, when transition A→C is deleted from the
HSTD given in Fig. 6(i), the resulting HSTD contains
state C, which becomes unreachable. In this case, the
disjoint graphs or the unreachable states have to be
deleted from the HSTD with the transitions connected to
them. Deleting corresponding states and transitions from
the round-trip path tree does not require any extension for
an existing path. For example, when transition A→C is

16 JOURNAL OF SOFTWARE, VOL. 3, NO. 5, MAY 2008

© 2008 ACADEMY PUBLISHER

deleted from the round-trip path tree, the remodeled tree
is the result of deleting transition A→C and the resulting
disjoint graph from the original round-trip path tree.

Figure 6. Transition deletion mechanism. (i) HSTD, (ii) round-trip path
tree constructed from the HSTD, (iii) round-trip path tree after deleting

the transition between A and B states, (iv) round-trip path tree after
deleting the transition between A and C states.

In summary, when deleting a transition from the

HSTD, it is not required to reproduce the round-trip path
tree. The round-trip path tree can be remodeled without
referring to the HSTD. In this case, if deleting a transition
from the round-trip path tree results in a disjoint graph,
the disjoint graph is reconnected to the tree, as illustrated
in Step 3.2.2 in the procedure given in Fig. 7.

Similar actions have to be taken when the values
assigned to the parameters used in the transition predicate
cause the transition not to be executed.

The round-trip path tree transitions represented by
dotted links are used to consider the CFG of the hook
methods called implicitly. Since the CFGs are no longer
used during the instantiation testing stage, such
transitions are deleted. When deleting a dotted transition,
the transition source state must be deleted and the
incoming transition to the source state has to be
redirected to end at the destination state of the dotted
transition. For example, the transition from initializing
state to Open state in Fig. 5 is dotted. Therefore, the
transition and the initializing state must be deleted, and
transition labeled 1 must be connected to Open state.

After performing the deletion process mentioned
above, all remaining transitions in the remodeled round-
trip path tree are executable. However, it is possible that
the remodeled round-trip path tree includes paths that are
identical, in terms of sequence of hook method calls and
transition predicates, to the paths in the original round-
trip path tree. In addition, it is possible that the
implementations of all hook methods invoked when
covering such paths during the domain engineering stage
are identical to the implementations of the corresponding
hook methods coded during the application engineering
stage. Such paths in the remodeled round-trip path tree
can be ignored and not reapplied at the application
engineering stage because they cover cases already tested
at the domain engineering stage. According to the
marking schema used in this paper, this case occurs when
a path in the remodeled round-trip path tree is identical to
a path in the original round-trip path tree in terms of
sequence of hook method calls and transition predicates
and all hook methods included in the sequence are
marked tested.

The procedure given in Fig. 7 remodels the round-trip
path tree used during the framework development stage
according to the above discussion. The resulting tree
includes transitions that are associated with hook methods
marked untested or tested but are necessary to cover
transitions associated with untested hook methods.

Input: A round-trip path tree including transitions associated
with marked hook methods
Output: A remodeled round-trip path tree that can be used for

testing the framework during the application
engineering stage.

Procedure:
1. For each dotted transition t from state s to state d do

1.1. delete transition t.
1.2. redirect the incoming transition to state s to end at state d.
1.3. delete state s.

2. Mark all transitions not visited.
3. while not all transitions are marked visited do

3.1. Pick a closest not visited transition t to a leaf state.
3.2. if (event associated with transition t represents a call for a

hook method not implemented in the instantiation) OR (the
supplied values of the parameters are not sufficient to make
the predicate of transition t TRUE) then

3.2.1. delete transition t.
3.2.2. for each transition tg outgoing from the destination state

of transition t
 Connect_Sub_Tree(transition tg)

3.3. else
3.3.1. delete from transition t any predicate that always

evaluates to TRUE.
3.3.2. mark transition t visited.

4. Mark all transitions not visited.
5. while not all transitions connected directly to leaf states are

marked visited do
5.1. Pick a transition t connected to a leaf state s.
5.2. if (all events associated to transitions from the root state to

state s represent calls to hook methods marked tested AND
all transitions from the root state to state s do not have
predicates including variables assigned to specific values at
application engineering stage) then

5.2.1. delete transition t and its destination state.
5.3. else

5.3.1. mark transition t visited.

Connect_Sub_Tree(transition t)

if a state s in the round-trip path tree has the same identifier as
the identifier of the source state of transition t then

Redirect transition t to be initiated from state s
else

Delete transition t
for each transition tg outgoing from the destination state
of transition t

Connect_Sub_Tree(transition tg)

Figure 7. Re-modeling round-trip path tree procedure

Suppose that the banking framework is used to

implement an instantiation to be used in managing bank
accounts. The bank has a policy to inactivate any account
with no activity for five years (i.e., 1825 days). Such
accounts cannot be settled unless they are reactivated.
Finally, the bank has three branches. The given
specification causes the settle method not to be
implemented; therefore, its corresponding transition is
deleted from the round-trip path tree. The CFG of the init
method includes a loop iterated more than once to create
objects for the three branches. The NewAccount method
calls the init method, and therefore, it is marked untested
and the corresponding transition is kept in the re-modeled

JOURNAL OF SOFTWARE, VOL. 3, NO. 5, MAY 2008 17

© 2008 ACADEMY PUBLISHER

round-trip path tree. Since all paths in the round-trip path
tree include the transition associated with a call for
NewAccount hook method, the paths are kept in the
remodeled round-trip path tree.

In another similar scenario, if the bank has one branch,
the CFG of the init method does not include a loop
iterated more than once. Therefore, the hook method
associated with the transition labeled 1 in Fig. 5 is
marked tested. All other methods are also marked tested
because none of them is of one of the four types of hook
methods mentioned in Section III (Step 1). When the
procedure given in Fig. 7 is applied, Transition 2 is
deleted, in Step 1, because it is dotted. In Step 2, all left
transitions are marked not visited. In Step 3, none of the
transitions is deleted because all of them are associated to
calls of hook methods implemented in the scenario. In
Step 4, all left transitions are marked not visited again. In
Step 5, transitions 3, 4, 5, 6, 7, 8, 9, 11, 15, and 16 are
deleted because the conditions stated in Step 5.2 are
satisfied. Transitions 12, 13, and 17 are kept because they
contain predicates that include variables assigned to
certain values for the number of days to inactivate an
account. Transitions 1, 10, and 14 are kept because they
are included in paths containing kept transitions (i.e.,
Transitions 12, 13, and 17). The remodeled round-trip
path tree is shown in Fig. 8.

Figure 8. Re-modeled round-trip path tree example

Step 3: Produce round-trip path test cases.
Each test case exercises a single round-trip path in the

remodeled round-trip path tree. The round-trip path starts
at alpha state of the remodeled round-trip path tree and
ends at one of the leaf states of the tree. In this step, it is
not required to create any test case from scratch. In the
remodeled tree, the paths that are identical to the
corresponding paths in the original tree are covered using
the same test cases used to cover the original tree paths
during the framework development stage. If the path in
the remodeled tree contains a predicate that has variables
assigned to certain values, the corresponding test case has
to be modified to include the provided values. Fig. 9
shows a Java coded test case that covers the path
Alpha→Open→Frozen→Open in the remodeled tree
given in Fig. 8. In the test case, the modified parts are
bolded.

In the remodeled tree, a path can be extended from a
path in the original round-trip path tree. In this case, the
corresponding test case has to be augmented in order to
consider the predicates and to include calls for the
methods associated with the added transitions.

public class TEST3_NewAccount{
 public TEST3_NewAccount(){

/* Test transition: source state: Alpha,
sink state: Open, event:
NewAccount(amount),
predicates:amount>=0 */

float amount=1;
NewAccount o = new NewAccount(amount);
/** @assert((o.balance()>=0)

&&((o.getCurrentDate()-
o.getLastActivityDate())<o.getMaxPeriod
()) && !(o.isFrozen()))*/

/* Test transition: source state: Open,
sink state: Frozen, event: freeze(),
predicates: none */

o.freeze();
/** @assert((o.balance()>=0) &&

((o.getCurrentDate()-
o.getLastActivityDate())<o.getMaxPeriod
()) && (o.isFrozen()))*/

/* Test transition: source state: Frozen,
sink state: Open, event: unfreeze(),
predicates: ((o.getCurrentDate()-
o.getLastActivityDate())<=1825) */

o.unfreeze();
/** @assert((o.balance()>=0) &&

((o.getCurrentDate()-
o.getLastActivityDate())<=1825) &&
!(o.isFrozen()))*/

 }
}

Figure 9. The Java implementation of a modified test case

In Step 2, two example scenarios are mentioned. In the
first one, the remodeled round-trip path tree is found to be
the same as the original one except for deletion of
transition labeled 15. As a result, all the test cases built
during the domain engineering stage are reused as-is
during the application engineering stage except the test
case including transition 15. This test case has to be
modified to discard the call for settle hook method. In the
second example scenario for which the round-trip path
tree is given in Fig. 8, one of the test cases built during
the domain engineering stage is not applicable because
settle hook method is not implemented during the
application engineering stage. In addition, four test cases
are applied as-is to test the framework at the application
engineering stage. None of the other test cases applied
during the domain engineering stage have to be reapplied
during the application engineering stage because they
cover cases already tested during the domain engineering
stage.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the proposed test-case-
reusing technique by applying it to test the framework
portion of two WaveFront framework instantiations. The
results are used to show the adequacy of the test-case-
reusing technique in terms of reducing the testing time
and effort.

A. The Used Framework and Instantiations
WaveFront Pattern (WFP) [38] is a pattern that

supports the computation of dependent elements. The

18 JOURNAL OF SOFTWARE, VOL. 3, NO. 5, MAY 2008

© 2008 ACADEMY PUBLISHER

pattern is used to generate frameworks automatically
using CO2P3S parallel programming system [39]. A
generated WaveFront Pattern framework was considered
in this experiment. The framework was relatively small,
consisting of six classes and about 150 lines of code.
Three hook descriptions were used to document how to
use the framework. In this experiment, the TFTH
technique was applied to build the test cases to test the
framework at the domain engineering stage. Two FICs
were identified and their HSTDs were constructed. The
hook descriptions were followed to construct the CFGs of
the hook methods. Eight CFGs were constructed. The
CFGs were traversed to construct the different
implementations of the hook methods. The two round-trip
path trees for the two FICs were built using the HSTDs
and traversed to construct the test cases. The two round-
trip path trees included 22 paths. Each path was used to
build a test case. Each test case exercising a hook method
that has different implementations created using the CFG
exercises each implementation at least once.

Two instantiations built using the WaveFront
framework were considered in this experiment. The first
instantiation was called Skyline Matrix and consisted of
about 450 lines of code and 12 classes. Six of the classes
were framework classes and the rest were developed by
the instantiation developer. The second instantiation was
called Matrix Block, consisting of about 330 lines of code
and 13 classes. Six of the classes were framework classes
and the rest were developed by the instantiation
developer.

B. Applying the Test-Case-Reusing Technique
The test-case-reusing technique was applied to

determine the reusable test cases for retesting the
framework. The purpose of the experiment was to
demonstrate the usefulness of the proposed technique in
(1) reusing the test cases built during the domain
engineering stage to test the framework during the
application engineering stage and (2) neglecting test cases
already applied during the domain engineering stage. The
implemented FICs in the two instantiations were
manually traced to identify the nonimplemented and the
nontested hook methods according to the discussion
provided in Section III. It is important to note that this
manual tracing would not be required if the details of the
hook enactment process are reported during the
implementation process of the FICs. For each
instantiation, the experiment was conducted twice. The
first time, the introduced technique was used without
considering the marking schema (i.e., tested or untested)
of the hook methods. Only the transitions associated with
nonimplemented hook methods or nonexecutable
predicates were deleted from the original round-trip path
tree. This means that only the first three steps of the
procedure given in Fig. 7 were applied. The second time,
the introduced technique was used as-is (i.e., all the steps
of the procedure given in Fig. 7 were applied). The
purpose of conducting the experiments twice was to
demonstrate the usefulness of the marking schema of the
hook methods in ignoring test cases already covered
during the domain engineering stage and consequently

reducing the number of applied test cases. Ignoring a test
case already covered during the domain engineering stage
implies reducing the time and effort required for testing
the framework during the application engineering stage.

In each experiment, the number of reused test cases as-
is, the number of modified test cases, the number of
ignored test cases, and the total number of required test
cases were counted and reported in the third, fourth, fifth,
and sixth rows of Table 1, respectively. The first and
second rows of the table report the name of the
framework instantiation and the experiment identifier,
respectively. The second, third, fourth, and fifth columns
report the results of applying the first and second
experiments on the Skyline Matrix and Matrix Block
instantiations, respectively.

Table 1. Results of applying the proposed test-case-reusing technique to

test the framework part of the WaveFront Pattern framework
instantiations.

Instantiation
Name

Skyline Matrix Matrix Block

Experiment 1st
Experiment

2nd
Experiment

1st
Experiment

2nd
Experiment

Number of
reusable test
cases as-is

16 1 11 1

Number of
modified test
cases

6 6 7 7

Number of
ignored test
cases

0 15 0 10

Total number
of test cases
applied
during the
application
engineering
stage

22 7 18 8

In the considered instantiations, the implemented FICs
did not contain methods not introduced in the hook
descriptions. As a result, none of the test cases required to
test the framework during the application engineering
stage was created from scratch. Despite the fact that this
is not always true, our experience in studying FICs gives
an indication that usually a relatively small percentage of
FIC methods are new. This experience gives an indication
that applying the introduced technique greatly reduces
framework testing efforts during the application
engineering stage. This is because most or all test cases
required for testing the framework during the application
engineering stage are reused versions of the test cases
built during the domain engineering stage. In the
conducted experiments, on average, about 60% of the
required framework test cases during the application
engineering stage were ignored because they covered
cases already tested during the domain engineering stage.
This gives an indication that the marking schema used in
the introduced technique for the hook methods is useful
in ignoring test cases already covered during the domain
engineering stage. Consequently, this gives an indication
that the introduced technique is effective in reducing
testing time and effort.

JOURNAL OF SOFTWARE, VOL. 3, NO. 5, MAY 2008 19

© 2008 ACADEMY PUBLISHER

C. Time Efficiency Assessment for the Test-Case-Reusing
Technique

To demonstrate the efficiency of the introduced test-
case-reusing technique in terms of reducing the time and
effort required for retesting the framework, five graduate
students at Kuwait University conducted a comparison
experiment individually. The experiment was performed
in two stages. In the first stage, the students were asked to
perform testing for the WaveFront framework used in the
two considered applications from scratch (i.e., without
considering the test-case-reusing technique introduced in
this paper). In the second stage, the students were asked
to apply the test-case-reusing technique to perform the
required testing. The time required for each experiment
stage was reported and compared.

In the first stage, the students were taught how to build
a state transition model for a class using the specifications
given in the hook descriptions. The students were given
the hook descriptions of the WaveFront framework and
the implemented hook method details. The students took
an average of about 12 hours and 46 minutes to draw the
state transition models for the four FICs included in the
two applications. Unfortunately, none of the models was
complete because the algorithm used to construct the
models from the method specifications [20] is difficult to
be applied manually. The students were taught how to
produce a round-trip path tree from a state transition
model and were given the revised models with the
invariants of the states included in the models. The
average time used to produce all required round-trip path
trees was about 1 hour and 12 minutes. Finally, the
students were taught how to write test drivers in Java for
the round-trip paths included in the trees. A total of 40
test drives were produced from all considered classes.
The average time spent in writing, compiling, and
executing the required test drivers was 12 hours and 32
minutes. In summary, the students were taught several
skills and techniques for producing the required test
drivers. The students were supplied with the framework
hook descriptions and the implemented hook method
details. In addition, the students were assisted in
completing the models and provided with the invariants
of the states to enable them to write the test drivers. Each
student took an average of 26 hours and 30 minutes to
produce the required test cases from scratch.

In the second stage, the students were given the
implemented hook method details and the 22 test drivers
applied during the framework domain engineering stage.
The students were taught first how to use the
implemented hook method details to list the names of the
methods implemented in the application and to list the
names of the methods marked untested. The average time
spent constructing the two lists for all the considered
methods was 11 minutes. After that, the students were
taught how to modify the given test drivers according to
the first three steps of the procedure given in Fig. 7. The
students spent an average of 14 minutes modifying the 22
test drivers for the two considered applications. In the
second application, four of the test drivers were found to
be inapplicable because they include a method not

implemented in the application. These test drivers were
ignored. The modifications applied to the rest of the test
drivers were similar to the ones applied to the test drivers
of the first application. The students were then taught
how to apply the last two steps of the procedure given in
Fig. 7 to neglect unnecessary test drivers. The students
spent an average of 7 minutes in detecting the
unnecessary test drivers. Finally, the students spent an
average of 17 minutes to compile and execute the test
drivers. In summary, the students were taught how to
apply the test-case-reusing technique and were supported
with the framework test drivers and a file containing the
implemented hook method details. The students spent an
average of 49 minutes to identify, modify, compile, and
execute the reusable test drivers.

Clearly, many fewer skills needed to be taught in the
second stage of the experiment. The students in the
second stage of the experiment were able to complete the
entire testing process without major assists, whereas
major revision was required in the first stage of the
experiment for the testing models. In addition, the
amount of information given in the second stage of the
experiment was less than that given in the first stage of
the experiment. Finally, the average time spent in the
second stage of the experiment was 3.08% of the average
time spent in the first stage of the experiment. The
experiment shows that applying the test-case-reusing
technique introduced in this paper reduces required
testing time and effort greatly. The results of the
experiment are summarized in Table 2.

Table 2. Time efficiency results of retesting the WaveFront Pattern
framework with and without applying the proposed test-case-reusing

technique.

Retesting the framework without
applying the test-case-reusing

technique

Retesting the framework by
applying the test-case-reusing

technique
Tasks Average

time
(minutes)

Tasks Average
time

(minutes)
1. Building state

transition
models.

2. Producing
round-trip path
trees.

3. Writing,
compiling, and
executing test
drivers.

766

72

752

1. Identifying the
implemented
and untested
hook methods.

2. Modifying the
framework test
drivers.

3. Detecting
unnecessary
test drivers.

4. Compiling and
executing the
reusable test
drivers.

11

14

7

17

Total 1590 Total 49 (3.08%)

V. AUTOMATION

Generally, software testing is a time-consuming and
costly task. Therefore, automation is a vital issue in
software testing. The techniques introduced in this paper
for identifying cases that have to be retested and for
reusing framework test cases already available are
systematic tasks and can be automated. To demonstrate

20 JOURNAL OF SOFTWARE, VOL. 3, NO. 5, MAY 2008

© 2008 ACADEMY PUBLISHER

the practicality of the introduced technique, a supporting
tool called JFramework Re-Tester has been developed.
The tool uses outputs of two other tools. The first one is
JFramework Tester [5], a tool that supports the testing of
object-oriented frameworks written in Java. JFramework
Tester automates TFTH testing, produces framework test
cases, and stores these test cases in the framework
database. The second tool is Hook Master [10], a tool that
enacts hook description statements and builds
corresponding Java implementation for hook methods
during the application engineering stage. In this research,
the Hook Master tool is extended to produce a file that
reports data required to identify whether the implemented
hook method must be considered in retesting the
framework. For each hook method created using the
Hook Master tool, the file reports (1) the hook method
name, (2) whether the hook description used to build the
hook method includes construction loops iterated more
than once during the hook method implementation
process, (3) whether the hook description used to build
the hook method includes parameters assigned to specific
values during the hook method implementation process,
(4) whether the hook method is an open type, and (5) if
any, the names of the other hook methods called by the
hook method under consideration.

JFramework Re-Tester tool is implemented in Java and
contains 8 classes and about 3250 lines of executable
code. The high-level description of the tool is shown in
Fig. 10. The user of the tool, the framework application
developer, selects the framework to be retested using a
browser. The framework database includes the
framework code, the framework hook descriptions, the
framework test cases produced by JFramework Tester
tool, and the implemented hook method data files
produced by the extended Hook Master tool. The Test
Case Parser module of the JFramework Re-Tester tool
parses the framework test cases and stores them in objects
organized in a link list data structure. Simultaneously, the
Implemented Hook Methods Parser module of the tool
parses the implemented hook method data and stores
them in objects organized in a link list data structure. The
parsed implemented hook method data are used by the
Nontested Hook Methods Detector module of the tool to
identify the nontested hook methods according to the
criteria discussed in Section III (Step 1). The parsed
implemented hook method data are also used with the
parsed test cases by the Test Case Modifier module of the
tool to modify the test cases according to the first three
steps of the procedure given in Fig. 7. The modified test
cases and the names of the hook methods marked
untested are used by the Applicable Test Case Detector
module of the tool to decide on the test cases that have to
be applied to retest the framework during the application
engineering stage.

The applicable test cases are stored in the framework
database and corresponding Java code is generated by the
Test Drivers Builder module of the tool. The Test Drivers
Builder module instruments the test drivers (i.e.,
implementations of the test cases) by the state invariants
written in DbC language [40] and stored in the

framework database. The Test Drivers Executer module
of the tool compiles the test drivers and the implemented
FICs using the dbc_javac compiler of the Jcontract tool
[41]. The Jcontract compiler checks the DbC
specifications in the Javadoc comments, generates
instrumented .java files with extra code to check the
contracts (i.e., preconditions and postconditions) in the
Javadoc comments, and compiles the instrumented .java
files with the javac compiler. The resulting .class files
are instrumented with extra bytecodes to check the
contracts at runtime. Finally, the Test Drivers Executer
module executes the test drivers and uses Jcontract tool
to automatically check the contracts at runtime and report
any violations found. The appendix shows a complete
example that uses the JFramework Re-Tester tool during
the application engineering stage to retest the banking
framework when the NewAccount FIC class is
implemented.

Figure 10. The high level design of the JFramework Re-Tester tool

VI. CONCLUSIONS AND FUTURE WORK

This paper introduces a test-case-reusing technique to
reuse the framework test suite already applied during the
domain engineering stage to test the framework during
the application engineering stage. The test-case-reusing
technique uses the same framework testable models
proposed in the TFTH technique. The test-case-reusing
technique first identifies the nontested portion of the
framework. Then, it remodels the round-trip path tree
used during the framework domain engineering stage to
eliminate the inclusion of the nonimplemented hook
methods and to ignore unnecessary tested hook methods.
Finally, the technique identifies the framework test cases
that can be reused as-is or augmented. As a result, the
introduced test-case-reusing technique for the framework
part of the instantiation makes use of the work performed
during the framework domain engineering stage in
several forms, including (1) reusing the framework
testing models, (2) ignoring the tested part of the
framework during the framework development stage, and
(3) reusing, augmenting, or modifying the framework test
cases.

Two experiments were conducted to show the
adequacy of the proposed test-case-reusing technique in

JOURNAL OF SOFTWARE, VOL. 3, NO. 5, MAY 2008 21

© 2008 ACADEMY PUBLISHER

terms of reducing testing time and effort. The
experiments show that the test-case-reusing technique
effectively reuses framework test cases to retest the
framework during the application engineering stage. In
addition, the experiments show that the test-case-reusing
technique greatly reduces the time and effort required for
retesting the framework during the application
engineering stage. The test cases considered in the test-
case-reusing technique are produced using the round-trip
path coverage technique. The effectiveness of the round-
trip path coverage test cases in terms of error detection
power is studied generally in [42] and specifically in a
framework context in [5].

A supporting tool that automates the complete retesting
process of the framework during the application
engineering stage using the introduced techniques is
developed. The tool is limited for testing frameworks
developed in Java.

The introduced technique and tool assume that the
framework under testing is provided with hook
descriptions. However, this might not be the case for
most of the available frameworks; typically frameworks
are provided with steps to illustrate how to use the
framework. These steps can be formed in hook
descriptions instead of in the informal description. Such a
task requires a clear understanding of hook notation and
hook description formal language. We have exercised this
task with several frameworks and found it to be
straightforward. Hooks were originally introduced as an
aid to show where and how to extend object-oriented
frameworks in constructing complete software
applications. This paper shows that the hooks can also be
used as an aid in retesting the framework. We expect that
extending the benefits and uses of the hooks will
encourage framework developers to show considerable
interest in documenting their frameworks using hooks.

In the area of future work, the proposed technique for
reusing the test cases does not guarantee that the modified
round-trip path tree is free of infeasible paths. Infeasible
paths are ones that cannot be executed because of
conflicting or impossible to satisfy predicates. To solve
this problem, we have to either detect the infeasible paths
and avoid using them in generating the test drivers [43] or
ignore any test driver that has violated preconditions [40].
Detection of the infeasible paths is not implemented in
the developed supporting tool. In addition, the tool does
not automate conversion of predicates into Java code
statements. The corresponding code statements are
associated with the predicates in the file that includes the
framework test cases.

APPENDIX A

The following is the content of the test cases generated
using JFramework Tester tool. This file is an input file to
the JFramework Re-Tester tool. Each test case includes
the description of the sequence of transitions exercised in
the test case. Each transition includes the hook method
name, hook method parameters, predicates with the
corresponding Java code, actions, and source and
destination states.

Class:NewAccount
TC 1
NewAccount()["float
amount=1;"],from:Alpha,to:Open
balance(),from:Open,to:Open
TC 2
NewAccount()["float
amount=1;"],from:Alpha,to:Open
deposit(amount)["amount=1;"]/balance=balanc
e+amount,from:Open,to:Open
TC 3
NewAccount()["float
amount=1;"],from:Alpha,to:Open
withdraw(amount)[(balance()-
amount)>=0"amount=o.balance();"]/balance=ba
lance-amount,from:Open,to:Open
TC 4
NewAccount()["float
amount=1;"],from:Alpha,to:Open
withdraw(amount)[(balance()-
amount)<0"amount=1+o.balance();"]/balance=b
alance-amount,from:Open,to:Overdrawn
deposit(amount)[(amount+balance())<0"amount
=o.balance();"]/balance=balance+amount,from
: Overdrawn,to:Overdrawn
TC 5
NewAccount()["float
amount=1;"],from:Alpha,to:Open
withdraw(amount)[(balance()-
amount)<0"amount=1+o.balance();"]/balance=b
alance-amount,from:Open,to:Overdrawn
balance(),from:Overdrawn,to:overdrawn
TC 6
NewAccount()["float
amount=1;"],from:Alpha,to:Open
withdraw(amount)[(balance()-
amount)<0"amount=1+o.balance();"]/balance=b
alance-amount,from:Open,to:Overdrawn
deposit(amount)[(amount+balance())>=0"amoun
t=1-o.balance();"]/balance=balance+amount,
from:Overdrawn,to:open
TC 7
NewAccount()["float
amount=1;"],from:Alpha,to:Open
freeze(),from:Open,to:Frozen
balance(),from:Frozen,to:Frozen
TC 8
NewAccount()["float
amount=1;"],from:Alpha,to:Open
freeze(),from:Open,to:Frozen
unfreeze()[(currentDate-
lastActivityDate)>maxPeriod"o.setLastActivi
tyDate(o.getCurrentDate()-
o.getMaxPeriod());"],from:Frozen,to:Inactiv
e
TC 9
NewAccount()["float
amount=1;"],from:Alpha,to:Open
freeze(),from:Open,to:Frozen
unfreeze()[(currentDate-
lastActivityDate)<=maxPeriod],from:Frozen,t
o:Open
TC 10
NewAccount()["float
amount=1;"],from:Alpha,to:Open
[(currentDate-
lastActivityDate)>maxPeriod"o.setLastActivi

22 JOURNAL OF SOFTWARE, VOL. 3, NO. 5, MAY 2008

© 2008 ACADEMY PUBLISHER

tyDate(o.getCurrentDate()-
o.getMaxPeriod());"],from:Open,to:Inactive
balance(),from:Inactive,to:Inactive
TC 11
NewAccount()["float
amount=1;"],from:Alpha,to:Open
[(currentDate-
lastActivityDate)>maxPeriod"o.setLastActivi
tyDate(o.getCurrentDate()-
o.getMaxPeriod());"],from:Open,to:Inactive
freeze(),from:Inactive,to:Frozen
TC 12
NewAccount()["float
amount=1;"],from:Alpha,to:Open
[(currentDate-
lastActivityDate)>maxPeriod"o.setLastActivi
tyDate(o.getCurrentDate()-
o.getMaxPeriod());"],from:Open,to:Inactive
settle(),from:Inactive,to:Omega
TC 13
NewAccount()["float
amount=1;"],from:Alpha,to:Open
close(),from:Open,to:Omega

APPENDIX B

The following is the content of the implemented hook
method details generated by the extended Hook Master
tool. This file is an input file to the JFramework Re-
Tester tool. The file lists the names of the implemented
hook methods, whether the hook description used to build
the hook method includes construction loops iterated
more than once during the hook method implementation
process, whether the hook description used to build the
hook method includes parameters assigned to specific
values during the hook method implementation process,
whether the hook method is an open type, and if any, the
names of the other hook methods called by the hook
method under consideration.
Class:NewAccount
Hook method:NewAccount
Number_of_iterations:1
Hook method:balance
Hook method:deposit
Hook method:withdraw
Hook method:freeze
Open hook
Hook method:unfreeze
Open hook
Hook method:close

APPENDIX C

The following are the test drivers generated using the
JFramework Re-Tester tool. The tool found that TC 13
contained in the file given in Appendix A includes a call
to settle hook method, which is not included in the file
given in Appendix B. Therefore, TC 12 is not reused.
Hook methods freeze and unfreeze are declared in the file
contained in Appendix B as open hook methods.
Therefore, they are marked untested and any test case that
includes a call for one of them has to be re-exercised.
This results in reusing test cases 7, 8, 9, and 11 as-is.
None of the other test cases included in the file in
Appendix A exercises cases not already tested during the

framework domain engineering stage. Therefore, these
test cases are ignored.

public class TEST7_NewAccount{
 public TEST7_NewAccount(){
 /* Test transition: source state:

Alpha, sink state: Open, event:
NewAccount(amount), predicates:
amount>=0 */

 float amount=1;
 NewAccount o = new

NewAccount(amount);

 /** @assert((o.balance()>=0) &&

((o.getCurrentDate()-
o.getLastActivityDate())<o.getMax
Period()) && !(o.isFrozen())) */

 /* Test transition: source state:
Open, sink state: Frozen, event:
freeze(), predicates: none */

 o.freeze();

 /** @assert((o.balance()>=0) &&

(o.isFrozen())) */
 /* Test transition: source state:

Frozen, sink state: Frozen,
event: balance(), predicates:
none */

 o.balance();

 /** @assert((o.balance()>=0) &&

(o.isFrozen())) */
 }
}

public class TEST8_NewAccount{
 public TEST8_NewAccount(){
 /* Test transition: source state:

Alpha, sink state: Open, event:
NewAccount(amount), predicates:
amount>=0 */

 float amount=1;
 NewAccount o = new

NewAccount(amount);

 /** @assert((o.balance()>=0) &&

((o.getCurrentDate()-
o.getLastActivityDate())<o.getMax
Period()) && !(o.isFrozen())) */

 /* Test transition: source state:
Open, sink state: Frozen, event:
freeze(), predicates: none */

 o.freeze();

 /** @assert((o.balance()>=0) &&

(o.isFrozen())) */
 /* Test transition: source state:

Frozen, sink state: Inactive,
event: none, predicates:
(getCurrentDate() –getLastAct
ivityDate())>=getMaxPeriod() */

 o.setLastActivityDate(o.get
CurrentDate()-o.getMaxPeriod());

 /** @assert((o.balance()>=0) &&

((o.getCurrentDate()-
o.getLastActivityDate())>=o.getMa
xPeriod()) && !(o.isFrozen())) */

JOURNAL OF SOFTWARE, VOL. 3, NO. 5, MAY 2008 23

© 2008 ACADEMY PUBLISHER

 }
}

public class TEST9_NewAccount{
 public TEST9_NewAccount(){
 /* Test transition: source state:

Alpha, sink state: Open, event:
NewAccount(amount), predicates:
amount>=0 */

 float amount=1;
 NewAccount o = new

NewAccount(amount);

 /** @assert((o.balance()>=0) &&

((o.getCurrentDate()-
o.getLastActivityDate())<o.getMax
Period()) && !(o.isFrozen())) */

 /* Test transition: source state:
Open, sink state: Frozen, event:
freeze(), predicates: none */

 o.freeze();

 /** @assert((o.balance()>=0) &&

(o.isFrozen())) */
 /* Test transition: source state:

Frozen, sink state: Open, event:
unfreeze(), predicates:
balance>=0 */

 /* The following is a predicate
assertion */

 /** @assert(o.balance()>=0) */
 o.unfreeze();

 /** @assert((o.balance()>=0) &&

((o.getCurrentDate()-
o.getLastActivityDate())<o.getMax
Period()) && !(o.isFrozen())) */

 }
}

public class TEST11_NewAccount{
 public TEST11_NewAccount(){
 /* Test transition: source state:

Alpha, sink state: Open, event:
NewAccount(amount), predicates:
amount>=0 */

 float amount=1;
 NewAccount o = new

NewAccount(amount);

 /** @assert((o.balance()>=0) &&

((o.getCurrentDate()-
o.getLastActivityDate())<o.getMax
Period()) && !(o.isFrozen())) */

 /* Test transition: source state:
Open, sink state: Inactive,
event: none, predicates:
(getCurrentDate() -
getLastActivityDate())>=getMaxPer
iod() */
o.setLastActivityDate(o.getCurre
ntDate()-o.getMaxPeriod());

 /** @assert((o.balance()>=0) &&

((o.getCurrentDate()-
o.getLastActivityDate())>=o.getMa
xPeriod()) && !(o.isFrozen())) */

 /* Test transition: source state:
Inactive, sink state: Frozen,
event: freeze(), predicates: none
*/

 o.freeze();

 /** @assert((o.balance()>=0) &&

(o.isFrozen())) */
 }
}

public class DRIVER_MyAccount{
 public static void main(String
 args[]){
 //invoking reusable test drivers
 new TEST7_NewAccount();
 new TEST8_NewAccount();
 new TEST9_NewAccount();
 new TEST11_NewAccount();
 }
}

ACKNOWLEDGMENT

The authors would like to acknowledge the support of
this work by Kuwait University Research Grant WI01/06.

REFERENCES

[1] A. Tevanlinna, J. Taina, and R. Kauppinen, “Product Family
Testing: a Survey,” ACM SIGSOFT Software
Engineering Notes, 2004, Vol. 29, No. 2, pp.12-18.

[2] J. Bosch, Design and Use of Software Architectures,
Addison-Wesley, 2000.

[3] K. Beck and R. Johnson, “Patterns Generated
Architectures,” Proc. of ECOOP 94, 1994, pp. 139-149.

[4] R. Binder. Testing Object-Oriented Systems, Addison
Wesley, 1999.

[5] J. Al Dallal and P. Sorenson, “System Testing for Object-
Oriented Frameworks Using Hook Technology,” Proc. of
the 17th IEEE International Conference on Automated
Software Applications (ASE’02), Edinburgh, UK,
September 2002, pp. 231-236.

[6] R. Kauppinen, J. Taina, and A. Tevanlinna, “Hook and
Template Coverage Criteria for Testing Framework-Based
Software Product Families,” In Proceedings of the
International Workshop on Software Product Line
Testing, Boston, Massachusetts, USA, 2004.

[7] J. Al Dallal, “Class-Based Testing of Object-Oriented
Framework Interface Classes,” Ph.D. Thesis, University
of Alberta, Department of Computing Science, 2003.

[8] J. McGregor, “Testing a Software Product Line,” Technical
Report CMU/SEI-2001-TR-022, Software Engineering
Institute, Pittsburgh, PA, 2001.

[9] G. Froehlich, H.J. Hoover, L. Liu, and P.G. Sorenson.
“Hooking into Object-Oriented Application Frameworks,”
Proc. 19th Int'l Conf. on Software Engineering, Boston,
1997, pp. 491-501.

[10] G. Froehlich, “Hooks: an Aid to the Reuse of Object-
Oriented Frameworks,” Ph.D. Thesis, University of
Alberta, Department of Computing Science, 2002.

[11] D.A. Sykes and J.D. McGregor, Practical Guide to Testing
Object-Oriented Software, Addison Wesley, 2001.

[12] N. Daley, D. Hoffman, and P. Strooper, “A Framework for
Table Driven Testing of Java Classes,” Software-Practice
and Experience, 2002, 32, pp. 465-493.

24 JOURNAL OF SOFTWARE, VOL. 3, NO. 5, MAY 2008

© 2008 ACADEMY PUBLISHER

[13] S. Mouchawrab, L. C.Briand, and Y. Labiche, “A
Measurement Framework for Object-Oriented Software
Testability", Journal of Information and Software
Technology,” 2005, Vol. 47, No. 15, pp. 979-997.

[14] L. C. Briand, Y. Labiche, and M. Sówka, “Automated,
Contract-Based User Testing of Commercial-off-the-Shelf
Components,” Proceedings of the 28th International
Conference on Software Engineering (ICSE), Shanghai,
China, 2006.

[15] L. Gallagher and J. Offutt, “Automatically Testing
Interacting Software Components,” Workshop on
Automation of Software Test (AST 2006), Shanghai,
China, 2006.

[16] L. Gallagher, J. Offutt, and A. Cincotta, “Integration
Testing of Object-Oriented Components Using Finite
State Machines,” Journal of Software Testing,
Verification and Reliability, 2007, Vol. 17, No. 1, pp.
215-266,

[17] W. Tsai, Y. Tu, W. Shao, and E. Ebner. “Testing
Extensible Design Patterns in Object-Oriented
Frameworks Through Scenario Templates,” 23rd Annual
International Computer Software and Applications
Conference, Phoenix, Arizona, 1999.

[18] Y. Wang, D. Patel, G. King, I. Court, G. Staples, M.
Ross, and M. Fayad, “On Built-in Test Reuse in Object-
Oriented Framework Design,” ACM Computing Surveys
(CSUR), 2000, Vol. 32(1es), pp. 7-12.

[19] J. Al Dallal and P. Sorenson, “Reusing Class-Based Test
Cases for Testing Object-Oriented Framework Interface
Classes,” Journal of Software Maintenance and Evolution:
Research and Practice, 2005, Vol. 17, No. 3, pp.169-196.

[20] J. Al Dallal and P. Sorenson, “Generating State Based
Testing Models for Object-Oriented Framework Interface
Classes,” Transactions on Engineering, Computing and
Technology, 2006, Vol. 16, pp. 96-102.

[21] J. Al Dallal and P. Sorenson, “Generating Class Based Test
Cases For Interface Classes of Object-Oriented Black Box
Frameworks,” Transactions on Engineering, Computing
and Technology, 2006, Vol. 16, pp. 90-95.

[22] J. Al Dallal and P. Sorenson, “The Coverage of the Object-
Oriented Framework Application Class-Based Test
Cases,” Transactions on Engineering, Computing and
Technology, 2006, Vol. 16, pp. 103-107.

[23] J. Al Dallal, “Testing Object-Oriented Hook Methods,”
Kuwait Journal of Science and Engineering, 2008, Vol.
35, No. 2.

[24] J. Al Dallal and P. Sorenson, “Estimating the Coverage of
the Framework Application Reusable Cluster-Based Test
Cases,” Journal of Information and Software Technology,
2008, Vol. 50, No. 6, pp 595-604.

[25] J. Al Dallal and P. Sorenson, “Generating Class Based Test
Cases for Interface Classes of Object-Oriented Gray-Box
Frameworks,” International Journal of Computer Science
and Engineering, 2008, Vol. 2, No. 3, pp. 135-143.

[26] J. Al Dallal, “Testing Object-Oriented Framework
Applications Using FIST2 Tool: a Case Study,”
International Journal of Computer Systems Science and
Engineering, 2008, Vol. 4, No. 2, pp. 119-126.

[27] J. Al Dallal, “Adequacy of Object-Oriented Framework
System-Based Testing Techniques,” International Journal
of Computer Science, 2008, Vol. 3, No. 1, 36-43.

[28] A. Tevanlinna, “Product Family Testing with RITA,”
Proceedings of the Eleventh Nordic Workshop on
Programming and Software Development Tools and
Techniques, Turku, Finland, 2004.

[29] M. B. Cohen, M. B. Dwyer, and J. Shi, “Coverage and
Adequacy in Software Product Line Testing,” Proceedings

of the International Symposium on Software Testing and
Analysis, 2006 workshop on Role of software architecture
for testing and analysis, Portland, Maine, USA, 2006.

[30] M. Grindal, J. Offutt, and S.F. Andler, “Combination
Testing Strategies: a Survey,” Software Testing,
Verification and Reliability, 2005, Vol. 15, No. 3, pp.
167-199.

[31] A. Jaaksi, “Developing Mobile Browsers in a Product
Line,” IEEE Software, 2002, Vol. 19, No. 4, pp. 73-80.

[32] T. L.Graves, M. J. Harrold, Y. M. Kim, A. Porter, and G.
Rothermel, “An Empirical Study of Regression Test
Selection Techniques,” ACM Transactions on Software
Engineering and Methodology, 2001, Vol. 10, No. 2, pp.
184-208.

[33] J. Zheng, “In Regression Testing Selection when Source
Code is not Available,” Proceedings of the 20th
IEEE/ACM international Conference on Automated
software engineering, Long Beach, CA, USA, 2005.

[34] J. Zheng , B. Robinson , L. Williams , K. Smiley,
“Applying Regression Test Selection for COTS-Based
Applications,” Proceeding of the 28th international
conference on Software engineering, Shanghai, China,
2006.

[35] M. Harrold, J. Jones, T. Li, D. Liang, A. Orso, M.
Pennings, S. Sinha, S. Spoon, and A. Gujarathi,
“Regression Test Selection for Java Software,”
Proceedings of the 2001 ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages and
Applications (OOPSLA 2001), Tampa, Florida, USA,
2001, pp. 312-326.

[36] G. Rothermel, M. Harrold, and J. Dedhia, “Regression Test
Selection for C++ Software,” Journal of software testing,
Verification, and Reliability, 2000, Vol. 10, No. 6, pp. 77-
109.

[37] S. Wilkin and D. Hoffman, “Junit Extensions for
Documentation and Inheritance,” Proceedings of the 2002
Pacific Northwest Software Quality Conference, Protland,
USA, 2002, pp. 71-84.

[38] J. Anvik, S. MacDonald, D. Szafron, J. Schaeffer, S.
Bromling and K. Tan, “Generating Parallel Programs
from the Wavefront Design Pattern,” Proceedings of the
7th International Workshop on High-Level Parallel
Programming Models and Supportive Environments
(HIPS'02), Fort Lauderdale, Florida, 2002.

[39] K. Tan, D. Szafron, J. Schaeffer, J. Anvik, and S.
MacDonald, “Using Generative Design Patterns to
Generate Parallel Code for a Distributed Memory
Environment,” Proceedings of the 9th ACM SIGPLAN
Symposium on Principles and Practice of Parallel
Programming, San Diego, USA, 2003, pp. 203-215.

[40] Y. Cheon and G. Leavens, “A Simple and Practical
Approach to Unit Testing: the JML and Junit Way,” Proc.
of the 16th European Conference on Object-Oriented
Programming (ECOOP2002), 2002, pp. 231-254.

[41] Jcontract, http://www.parasoft.com/, ParaSoft Corporation,
May 2007.

[42] G. Antoniol, L. Briand, M. Penta, and Y. Labiche, “A Case
Study Using the Round-Trip Strategy for State-Based
Class Testing,” Carlton University TR SCE-01-08,
revised Jan. 2002.

[43] J. Offutt and J. Pan, “Automatically Detecting
Equivalent Mutants and Infeasible Paths,” The
Journal Of Software Testing, Verification, and
Reliability, 1997, Vol. 7, No. 3, pp 165-192.

JOURNAL OF SOFTWARE, VOL. 3, NO. 5, MAY 2008 25

© 2008 ACADEMY PUBLISHER

