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Abstract—Dynamic system reconfiguration techniques are 
presented that can enable the systematic evolution of 
software systems due to unanticipated changes in 
specification or requirements. The methodological approach 
is based upon a domain analysis, which identifies a set of 
concepts that reflect the types of reconfigurations possible 
and the system integrity characteristics that must be 
maintained during such reconfigurations, a domain design, 
which is expressed using the Unified Modeling Language 
(UML) as a constraint-driven representation of the domain 
analysis, and a domain implementation, which uses a 
programming environment that supports explicit metaclass 
programming to realize an executable model of the analysis 
and design. It was learned that explicit metaclass 
programming can effectively be used to encode the 
constrained model, as a static representation, at the 
metalevel. With respect to dynamic reconfiguration, it was 
learned that a base-level object could be an instance of a 
property metaclass that is unique to that base-level object. 
Through a mixin mechanism, emergent run-time properties 
could be dynamically applied just to that object. The set of 
available mixins should also be adjusted dynamically. This 
is the subject of future work. 
  
Index Terms—Component-based systems, Dynamic 
reconfiguration, Feature modeling, Model-driven 
development, Service-oriented Architecture, Software 
evolution, System integrity, UML 

I.  INTRODUCTION 

Deployed software systems can be characterized as 
being ever more complex, ever more prevalent, and ever 
more critical in many ways to society as a whole. 
Examples include the trend toward mobile and distributed 
systems, embedded systems and embedded controlling 
devices, personal digital devices, and others. Since these 
systems serve increasingly useful roles in many 
application domains, it is important they are engineered 
for future change as the demands placed upon them vary 
over time. 

However, predicting future user requirements or 

anticipating changing computing environment imposed 
requirements is extremely difficult and error prone, often 
resulting in over- or under-engineered solutions. The very 
nature of these systems (and by inference the 
requirements placed upon them) seems to continually 
grow in levels of complexity, interdependence, 
dynamism, and in other dimensions, and to continually 
outpace the state-of-the-art of software engineering 
capabilities required to respond to these driving concerns. 

Adaptive computing through dynamic system 
reconfiguration techniques can enable the systematic 
evolution of software systems due to unanticipated 
changes in specification or requirements. The kinds of 
change are dynamic in the sense they have not necessarily 
been pre-programmed as part of the current capability of 
a deployed system but instead represent a realignment of 
the implementation of a system. Software engineering 
techniques that enable dynamic system reconfiguration 
are viewed as an important basis for building software 
systems that can adjust their structural and behavioral 
make-up in phase with their run-time contexts. 

The overall contribution of the paper is a domain 
model that is useful at build time, and at run time, to 
enable the process of systematically changing software 
due to changes in software specification or software 
requirements. The specific contributions are the 
presentation of an executable model of dynamic system 
reconfiguration that is encoded using explicit metaclass 
programming techniques and an application-specific 
example of its instantiation. 

First, a description is given of the computing paradigm 
that is the basis for this investigation. The domain of 
dynamic reconfiguration is then presented, followed by 
an example that illustrates the model. The main parts of 
the paper describe the executable model in detail, 
including executing an application-specific example. A 
summary, conclusion, and description of future work 
come at the end. 

 

Based on “A Constrained Executable Model of Dynamic
Reconfiguration”, by D. Walsh, F. Bordelau, and B. Selic, which
appeared in the Proceedings of the 40th Hawaii International Conference
on System Sciences – 2007. Copyright 2007 IEEE. 

II.  BACKGROUND OVERVIEW 

The component-based and service-oriented systems 
paradigm is adopted as a realization platform because 
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complex systems can be decomposed as software 
components that implement services, that are units of 
deployment, that can in principle be dynamically 
reconfigured as distinct entities (through intra-component 
dynamic reconfiguration) and/or as cooperative entities 
(through inter-component dynamic reconfiguration). A 
component can be realized in many ways including 
through metaobjects that define its runtime properties or 
as a batch-compiled entity of an embedded system. 

A fundamental assumption is that a technical system 
specification may be expressed as a set of constraints [1]. 
A global property is a functional or non-functional 
constraint that requires global knowledge for 
conformance. A local property is a functional or non-
functional constraint that requires local (i.e. component-
level) knowledge for conformance. Examples of global 
properties include system level performance, availability, 
synchronization, distribution, security, or control style 
constraints. Examples of local properties include limits 
on the number of service invocations or service bindings, 
state element immutability, local performance, or local 
availability constraints. 

Importantly, since this is change to a running system, 
the existing system specification may impose hard 
constraints that limit the degree to which the need for 
change can be addressed. 

Dynamic system reconfiguration is addressed within 
the context shown in Figure 1. What follows is a 
description of each of the main elements that makeup this 
context in order to more clearly define what is in scope 
and what is out of scope for this investigation. 

 

Component
Framework

Computing Environment

Interacting Components

Component-based
software system

Serves to encode model-
based specification and to
help govern dynamic change

Domain of
dynamic system
reconfiguration
investigated

 Figure 1. Context of Dynamic System Reconfiguration 
  
A component-based software system comprises 

Interacting Components and a Component Framework. A 
Computing Environment is the run-time context of the 
system. A component-based software system is deployed 
and executes within this environment. 

A Component Framework is the context for the 
instantiation of components and for the provision of 
services for coordinating those components that have 
been realized within the framework. The framework 
constrains how a component interacts with other 
components for the component to be an independent yet 
cooperative member of an overall system of components. 
More specifically, a Component Framework provides 
capabilities for their installation and initial configuration, 
loading and instantiation, configuration and connection to 
any required system artefacts, and for governing dynamic 
system reconfiguration. 

Interacting Components form a system that 
implements required functional and non-functional 
properties through provided and required services (and 
associated service protocols). As a member of a greater 

system, a component is a unit of deployment whose 
encapsulated internal behaviour satisfies its external 
interaction obligations. Its internal behaviour may be 
implemented through the recursive composition of other 
components. 

A component is defined to have a behavioural 
signature and a structural signature (See Figure 2). A 
component’s behavioural signature is specific kinds of 
dependencies that determine its internal behaviour within 
a component-based system. The behavioural signature is 
composed of (i) service to service protocol, (ii) operation 
to required service, (iii) operation to provided service, 
(iv) operation to operation, (v) operation to state 
element, and (vi) operation to composite component 
service dependencies. A component’s structural signature 
is specific kinds of dependencies that determine its 
external interactions within a component-based system. 
The structural signature is composed of (a) component to 
component and (b) required service to provided service 
dependencies. 

Component A Component B

Structural Signature

communication path

connectionRequired Service Provided Service

Required Service to Provided Service dependency

Component to Component dependency

Behavioral Signature

Component

Composite Component

Provided Service Required Service

Composite Component Service

Operation A () Operation B ()

State Element

Required
Service
Protocol

Provided
Service
Protocol

Operation to
Composite

Component Service
dependency

Operation to
Provided Service

dependency

Service to
Service Protocol

dependency

Service to
Service Protocol

dependency

Operation to
Required Service

dependency

Operation to
State Element
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Operation to
Operation
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Figure 2. Behavioral and Structural Signatures of a Component 

 
A component framework may change just as well as 

the configuration of components that it instantiated. This 
paper focuses on component-level dynamic 
reconfiguration. However, the model execution 
environment section provides an example, through 
simulation, of a component framework that does change 
to support the dynamic reconfiguration models that are 
presented. 

Dynamic change may well lead to the need for further 
dynamic change (a system may not reach an acceptable 
equilibrium). Managing this kind of ‘cycle of change’ is 
considered out of the scope of this paper and to be future 
work. This investigation focuses on ‘discrete change 
events’ and the formulation of a model-based 
specification of such events. 

Finally, in this context, a context-aware component-
based software system is viewed to be a system that can 
continually dynamically reconfigure itself to stay in phase 
with its (changing) computing environment. This 
investigation describes an approach that enables context-
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aware computing. However, the latter is considered future 
work. 

III.  THE DOMAIN OF DYNAMIC 
RECONFIGURATION 

This section presents a summary of a domain model of 
dynamic system reconfiguration first presented in [2] and 
more fully reported on in [3], which reviews significant 
related research work. The full analysis identifies and 
categorizes the various types of change that may be 
required, the relationship between those types, and the 
system integrity characteristics that need to be considered 
when such changes take place.  

A. Summary of  Domain Analysis of Dynamic System 
Reconfiguration 

This subsection describes the common and variable 
causal flow of dynamic reconfiguration. The intent is to 
provide a description of the full spectrum of architectural, 
behavioural, and structural changes that could be 
exhibited by a dynamically reconfigurable component-
based software system. The following nine change 
groups are identified: Pure architectural change; pure 
behavioural change; behaviour-driven structural change; 
comprehensive behaviour-driven change; pure structural 
change; structure-driven behavioural change; 
comprehensive structure-driven change; pure 
behavioural and structural change; and comprehensive 
change. 

Each change group is composed of a set of related 
change sequences that describe how a particular change 
group unfolds. A change sequence combines up to six 
different change types. 

Dynamic reconfiguration progresses according to the 
activity model shown in Figure 3. The decision points 
immediately after ‘Reconcile Change Properties with 
Existing System Properties’ indicates this reconciliation 
may lead to change rejection. The decision point 
immediately after ‘Estimate Impact of Architectural 
Change upon System Integrity’ indicates this impact 
analysis may lead to change rejection. The parallel fork 
indicates ‘Enact Change by Realigning System 
Constructs’ and ‘Ensure System Integrity Characteristics’ 
happens concurrently. The parallel join indicates a system 
has enacted dynamic change while attempting to ensure 
overall system consistency. 

Given the interactions implied by Figure 3, Table 1 is a 
use case of the general context of dynamic 
reconfiguration. This use case describes the different 
levels of dynamism as alternatives based upon the change 
groups. 

Pure architectural change is a change group that 
consists of a single change sequence involving a single 
change type: architectural change. In its purest form, this 
is a change to only global and/or local system properties. 
By implication, the existing behavioural and structural 
signatures of the system can accommodate the change 
and are unaffected. 

Pure behavioural change is a change group that 
encompasses three change sequences, each driven by 

architectural change: (i) protocol change only, (ii) 
protocol change leading to interface change, or (iii) 
protocol change leading to interface change leading to 
internal change. By implication, pure behavioural 
change means that only the behavioural signature of a 
system is realigned. 

 

   

Enact Change by Realigning
System Constructs

Detect Origin of Change

Represent Change through Global/Local Properties

Reconcile Change Properties with Existing System Properties

Reject Change

Estimate Impact of Change upon System Integrity

System constructs:
External interactions
Internal behavior
Dependencies
Context of change

System integrity management:
Global consistency
Local consistency
Active reference
Dependent operation
Composite operation
Constrained operation
State

Ensure System
Integrity Characteristics

 
Figure 3. Activity Model of General Context of Dynamic 

Reconfiguration 
 
Behaviour-driven structural change is a change group 

that comprises two change sequences, each driven by 
architectural change: (i) protocol change leading to 
topology change or (ii) protocol change leading to 
topology change leading to substitution. By implication, 
behaviour-driven structural change means that, when the 
behavioural signature of a system is realigned, it causes 
the structural signature of the system to be realigned. 

Comprehensive behaviour-driven change is a change 
group that is a combination of pure behavioural change 
and behaviour-driven structural change. By implication, 
comprehensive behaviour-driven change means that, 
when the behavioural signature of a system is realigned, 
it causes the structural signature of the system to be 
realigned. All combinations are possible as long as a 
behavioural change leads to a structural change. 

Pure structural change is a change group that 
encompasses two change sequences that are each driven 
by architectural change: (i) topology change only or (ii) 
topology change leading to substitution. By implication, 
pure structural change means the structural signature, 
and only the structural signature, of a system is realigned. 

Structure-driven behavioural change is a change group 
that comprises three different change sequences, each 
driven by architectural change: (i) topology change 
leading to protocol change, (ii) topology change leading 
to protocol change leading to interface change, or (iii) 
topology change leading to protocol change leading to 
interface change leading to internal change. By 
implication, structure-driven behavioural change means 
that, when the structural signature of a system is 
realigned, it causes the behavioural signature of the 
system to be realigned. 
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Use Case: General Context of Dynamic Reconfiguration 
Description: This use case describes the overall casual flow of 
dynamically reconfiguring a component-based system. 
Actors: System User and/or Processing Environment 
Pre-Condition: Component-based system provides adequate 
capability to respond to run time change stimuli, characterize 
the nature of change required as global or local properties 
(including their reconciliation), enact generic types of change 
that may be required, and govern change in a manner to help 
ensure overall system consistency. 
Triggering Events: User-Driven Change and/or Computing 
Environment Imposed Change 
Sequence: 
Step 1. Sense User-Driven and/or Computing Environment 
Imposed Change. 
Step 2. Interpret and then represent the particular Origin of 
Change as Global Properties or Local Properties with an 
associated Reconciliation Policy (also reconcile with existing 
System Properties). 
Step 3. Determine what feasible change group (if any) satisfy 
the Condition Change Criteria and enact change (See 
Alternatives). 
Step 4. Realign Dependencies (if necessary) and therefore 
possibly External Interactions and Internal Behavior. 
Step 5. Validate preservation of applicable System Integrity 
Characteristics during change sequence. 
Post-condition: Component-based system is dynamically 
reconfigured based upon a particular change groups’ change 
sequence in a manner that helps to ensure overall system 
integrity. 
Resulting Events: Further User-Driven Change and/or 
Computing Environment Imposed Change 
Alternatives for Step 3: 
Alternative 1 – Pure architectural change; 
Alternative 2 – Pure behavioral change; 
Alternative 3 – Behavior-driven structural change; 
Alternative 4 – Comprehensive behavior-driven change; 
Alternative 5 – Pure structural change; 
Alternative 6 – Structure-driven behavioral change; 
Alternative 7 – Comprehensive structure-driven change; 
Alternative 8 – Pure behavioral and structural change; or 
Alternative 9 – Comprehensive change. 

 
Table 1. Common and Variable Causal Flow of Dynamic 

Reconfiguration 
Comprehensive structure-driven change is a change 

group that is a combination of pure structural change and 
structure-driven behavioural change. By implication, 
comprehensive structure-driven change means that, when 
the structural signature of a system is realigned, it causes 
the behavioural signature of the system to be realigned. 
All combinations are possible as long as a structural 
change leads to a behavioural change. 

Pure behavioural and structural change is a change 
group that is a combination of pure behavioural change 
and pure structural change. By implication, pure 
behavioural and structural change means that the 
behavioural signature and the structural signature of a 
system are realigned but one does not drive the other to 
change. All combinations are possible as long as 
behavioural change does not lead to structural change nor 
does structural change lead to behavioural change. 

Comprehensive change is a change group that is a 
combination of comprehensive behaviour-driven change 
and comprehensive structure-driven change. By 

implication, comprehensive change means that the 
behavioural signature and the structural signature of a 
system are realigned as one drives the other to change. 
All combinations are possible as long as behavioural 
change leads to structural change and structural change 
leads to behavioural change. 

B.  Summary of Domain Design of Dynamic System 
Reconfiguration 

Figure 4 shows a UML class model of the domain 
concepts of Comprehensive change. With respect to 
change properties reconciliation, the classes System 
Properties and Change Properties represent the current 
system properties and (new) change properties, 
respectively, as global and local constraints. Each 
grouping of properties is internally reconciled according 
to reconciliation policies. In addition, these groupings are 
reconciled with respect to each other. The overall 
reconciliation is modeled as a binary association linking 
System Properties and Change Properties. The reconciled 
change properties in turn determine which subsets of 
change types are required to perform the necessary 
system reconfiguration. 
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Figure 4. Class Model of Comprehensive Change 

    
With respect to change enactment, the classes Change 

Type, System Integrity Characteristics, and System Model 
specify how the required change types, as constrained by 
system integrity characteristics, realign the system model. 
Depending upon the types of change required, the 
structural and/or behavioral signature of the system may 
have to be re-aligned, which, in turn, may impact its 
internal behavior or external interactions. 

   With respect to further dynamic reconfiguration, 
given the internal behavior or external interactions of a 
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system have changed, the system may reach a failure 
state or require further change based upon emergent 
properties. This is represented by the group of classes 
External Interactions, Internal Behavior, Fault Tolerance 
Mode, and Origin Of Change. External Interactions and 
Internal Behavior are related to Fault Tolerance Mode 
upon failure (or emergent properties). Fault Tolerance 
Mode then drives Origin Of Change (which ultimately 
may be user driven or computing environment imposed) 
which in turn indicates needed change properties. This 
completes the cycle of system dynamic reconfiguration 
described by the domain model. 

IV. FINANCIAL ANALYSIS SYSTEM CASE STUDY 

The following is a review of a financial analysis 
system case study first presented in [4] and more fully 
reported on in [3]. The case study is an application-
specific example of changing global and local properties 
leading to comprehensive change. The example describes 
the components and the dynamic interoperation of two 
initially decoupled financial systems that specialize in 
maintaining knowledge and providing predictions about a 
particular sector of the economy. System A’s clients are 
concerned with shorter-term predictions. System B’s 
clients are concerned with longer-term predictions. 

The following are examples of global system 
properties: 

• (GP1) The control style of each system (as 
depicted by use case maps ); 

• (GP2) The operations of different components 
provide needed behavior within limited time 
constraints (scenario analysis must not be 
invalidated by current financial conditions); and 

• (GP3) The state elements of different 
components are updated in a synchronized 
fashion (present value analysis, cash flow 
projection, and scenario analysis reference data 
is synchronized). 

The following are examples of local system properties: 
• (LP1) A component has an upper bound on the 

number of threads that may be spawned in 
response to remote service requests; 

• (LP2) A provided service has at most one 
required service bound to it and vice versa; and 

• (LP3) The values of certain state elements may 
not change (Scenario Analysis reference data, 
once synchronized, remains immutable).  

   Figure 5 shows the original control style of System 
A. Use Case Maps (UCMs) [5] are used to illustrate the 
causal flow that is required of System A’ s components to 
provide shorter-term predictions. For example, for 
timeliness reasons, cash flow projections and valuation 
assessment are done on-line. 

 

Scenario
Analysis

Energy Sector
Knowledge

Energy Sector
Conditions

Valuation AssessmentCash Flow Projections

a1

a2 a3 a4 a5a6
a7

a8a9

 
Figure 5. Original Control Style of System A 

 
System A’s responsibilities are: (a1) generate on-line 

financial conditions, (a2) provide cash flow projections, 
(a3) provide valuation assessment, (a4) update on-line 
financial conditions and update knowledge information 
about market sector, (a5) determine current market 
knowledge, (a6) current financial conditions and market 
knowledge, (a7) update preferred stock and common 
stock value predictions, (a8) provide knowledge 
information about market sector, and (a9) update 
knowledge information about market sector. 

   Figure 6 shows the original control style of System 
B. UCMs are used to illustrate the causal flow that is 
required of System B’ s components to provide longer-
term predictions. For example, for reasons of accuracy, 
cash flow projections and valuation assessment are done 
off-line on demand. 

 

Scenario
Analysis

Energy Sector
Knowledge

Energy Sector
Conditions

Valuation
Assessment

Cash Flow
Projections

b1 b2

b3b4

b5

b6 b7 b8

b9

b10b11

 
 

Figure 6. Original Control Style of System B 
   
System B’s responsibilities are: (b1) generate on-line 

financial conditions, (b2) update on-line financial 
conditions and update knowledge information about 
market sector, (b3) determine current knowledge about 
market, (b4) provide current financial conditions and 
knowledge about market, (b5) determine cash flow 
projections, (b6) provide cash flow projections, (b7) 
determine valuation assessment, (b8) provide valuation 
assessment, (b9) update preferred stock and bond value 
predictions, (b10) provide knowledge information about 
market sector, and (b11) update knowledge information 
about market sector.  

The systems are dynamically reconfigured so that 
System A can leverage System B’s preferred stock 
predictions. To do this, each system’s architectural 
constraints are reconciled and changes are constrained to 
be backward compatible. System A is then able to 
provide improved analytic results for its respective clients 
based upon the new information that is available from 
System B.  

Figure 7 shows the new control style of System A. A 
new UCM represents the causal flow linking the Scenario 
Analysis component of System A to the Scenario 
Analysis component of System B. This enables System A 
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to use System B’s longer-term predictions to validate its 
shorter-term predictions. 

 
Scenario Analysis-A

Energy
Sector
Knowledge-A

a5a6

a12

Scenario
Analysis-B

a7 a10

a8

a11

a9  
 

Figure 7. New Control Style of System A 
 
The new responsibilities are: (a10) determine long-

term predicted values, (a11) provide long-term predicted 
values, and (a12) validate short-term predictions using 
long-term predictions.  

System evolution happens as follows:  
• Evolution is localized to the scenario analysis 

component of System A 
• A communication path is established between 

the two systems 
• System A’s external interactions evolve to 

support new required service 
• Internal behavior of System A’s scenario 

analysis component evolves in place so that it 
can process the new information that is 
exchanged. 

V. EXECUTABLE MODEL 

   When a system’s run-time properties are realized as 
instantiations of programmable metaclasses, these 
properties can be dynamically changed when their 
metaclasses change. This section describes the use of 
explicit metaclass programming techniques to encode 
certain aspects of the domain model [6]. The purpose of 
constructing an executable model is: (i) to gain a more 
direct understanding of the conceptual framework and (ii) 
to validate, through empirical proof and simulation, that 
the constrained model is applicable within application-
specific contexts. 

   With this approach, metaobjects are employed to 
implement the Component Framework shown in Figure 
1. The Interacting Components shown in Figure 1 are 
implemented by base-level objects, which are instances 
of the metaobjects. In this environment metaobjects 
themselves are run-time objects. As run-time objects they 
can interact and change their characteristics. When they 
change their characteristics they can change the run-time 
properties of base-level objects that are their instances. 

   Using the case study, a description is given of 
representing and then dynamically changing an 
application-specific global property leading to other kinds 
of change. The general approach is the following. The 
metaobjects of system and change properties encapsulate 
system signature ‘fragments’ that are implied by their 
instances. The current system signature of a system is the 
composition of the system signature ‘fragments’ of its 
global and local system properties. To change the 
signature of a system, the system signature ‘fragments’ of 
change properties are composed with the existing system 

signature ‘fragments’ of system properties. In this 
implementation, the global or local property metaobjects 
implement a standardized protocol for setting up a system 
signature ‘fragment’. A particular fragment is expressed 
as a configuration of base-level objects that can be 
instantiated at the time change properties are reconciled 
with system properties. 

A. MetaclassTalk as a Reflective Substrate 
Bouraqadi-Saadani et al [6-7] describe the 

MetaclassTalk computing environment that provides 
direct support for meta object composition mechanisms to 
enable system evolution and adaptation. These 
composition mechanisms allow specific properties to be 
assigned to classes in order to allow the properties of 
their instances to dynamically change. They note that 
from an architectural viewpoint meta class composition 
allows a system to be organized into different levels of 
abstraction. An example is given showing the meta class 
composition “False + SoleInstance + Final” to create 
composed class properties that may then be instantiated 
as the sole false instance whose class may not be sub-
classed.    

They describe a reflective system development 
approach that utilizes safe and explicit metaclass 
programming techniques and an implementation 
environment that enables this that is known as 
MetaclassTalk. This paradigm is based upon meta-links, 
which causally connect base-level and meta-level objects, 
and meta-object cooperation, which is explicitly 
programmed. Examples of the kinds of relationships that 
may be implemented between base-level objects and 
meta-level objects include: (i) a single meta-object shared 
between instances of the same class; (ii) a single specific 
meta-object private to each base object; and (iii) many 
meta-objects shared among many base objects [7]. This is 
shown in Figure 8 below: 

 

Meta-objects

Base-objects

o1 o2 o3 o4

mo1 mo2 mo3

mo5mo4

Meta-link Meta-cooperation  
Figure 8. Base versus Meta-objects 

 
   Figure 9 shows how MetaclassTalk can be used as a 

reflective substrate of the domain model presented in 
Section III. The System Model and Context of Change 
classes, shown in Figure 4, are encoded as meta-objects 
that cooperate to enable the dynamic reconfiguration of 
base-level application-specific component interactions. 
The meta-link causally connecting the base-level to 
Context of Change represents emergent run-time 
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characteristics that are ultimately manifested as change 
properties. Context of Change and the System Model 
cooperate at the meta-level to reconcile change properties 
with existing system properties and to realign the 
behavioral and/or structural profile of the system as 
required. The meta-link linking the base-level to the 
System Model represents the causal connection required 
to affect the realignment of the running system. This may 
in turn lead to new emergent run-time characteristics, 
leading to further dynamic reconfiguration, and so on. 

 

Meta-objects

Base-objects

System Model
Meta-objects

Context of
Change

Meta-objects

Interacting
Components

Emergent
Properties

 
Figure 9. Using the reflective substrate 

 
B. Using Explicit Metaclass Programming  

This subsection illustrates how the domain design of 
comprehensive change is represented within the reflective 
substrate using explicit metaclass programming 
techniques. What follows is an explanation of how 
Global Properties are encoded. 

   Bouraqadi-Saadani [8] explains the use of 
compatibility and property metaclasses to ensure the 
overall compatibility of composed metaclasses that are 
explicitly programmed. This technique is employed when 
encoding the constrained model and therefore 
compatibility and property metaclasses are part of the 
encoding. Bouraqadi-Saadani [8] also implements meta-
level support for mixins as a mechanism to augment 
property metaclasses. This technique is also used when 
encoding the model. As an alternative mechanism to 
mixins, the use of “traits” is under review Scharli et al 
[9]. Because Bouraqadi-Saadani [8] explicitly uses the 
term property, property named elements of the domain 
model are referenced as constraints below.  

   Figure 10 shows how global and local constraints are 
encoded. As discussed previously, a global constraint is a 
system characteristic that requires global knowledge for 
conformance. A local constraint is a system characteristic 
that requires local (i.e. component-level) knowledge for 
conformance. Examples of constraint characteristics that 
may apply, globally or locally, include state element 
immutability, cardinality (i.e. limits on the number of 
service invocations or service bindings, and so on), 
performance, synchronization, distribution, persistence, 
security, control style, and so on. These characteristics 
are represented as Constraint Characteristics Meta 
Objects in Figure 10. They are ‘mixedin’ when a global 
or local constraint is instantiated based upon a mixin 
linearization list that determines the order of 
composition. 

The following is a short description of the metaobjects 
shown in Figure 10 that are required to encode a global 
property: 

Global Constraint is defined as a concrete subclass of 
Constraint. It is an instance of Global Constraint 
Property Meta Object. When instantiated as a base-level 
object, a global constraint represents a particular global 
property of a component-based software system. 
Examples of global constraints were given in Section III.  

Constraint is defined as an instance of Constraint 
Property Meta Object. It is the abstract superclass of 
Global Constraint and Local Constraint. It implements 
constraintSpec, which represents the specification of a 
particular global or local constraint that is instantiated by 
Global Constraint or Local Constraint. It also 
implements the creation method, new: with Mixin 
Linearization List, of Global Constraint and Local 
Constraint. The mixin linearization list determines the 
mixin properties that are composed when a global or local 
constraint is created.     

Constraint Property Meta Object is defined as an 
instance of Composite Class (not shown). Composite 
class is part of the MetaclassTalk library. It is a class 
whose instances inherit from their superclass through a 
set of mixins. The inheritance relationship is via implicit 
subclass(es) of the ‘official superclass’ that are built by 
means of the mixin mechanism. Constraint Property 
Meta Object is defined as a subclass of Constraint 
Compatibility Meta Object with Abstract as a mixin. 
Abstract is part of the MetaclassTalk library of mixins. 
When it is added as a mixin to Constraint Property Meta 
Class mixins, Constraint becomes an abstract class.  

Constraint Compatibility Meta Class is defined as a 
subclass and as an instance of Standard Class (not 
shown). Standard Class is part of the MetaclassTalk 
library. This is the root class of all MetaclassTalk explicit 
metaclasses. When subclassed, it enables the explicit 
definition of new kinds of (meta) classes. Constraint 
Compatibility Meta Class enables the compatibility 
model described in [8] among the inheritance hierarchies 
that underpin Constraint, Global Constraint, and Local 
Constraint.  

Global Constraint Property Meta Object is defined as 
an instance of Composite Class to enable mixin property 
composition (not shown). It is defined as a subclass of 
Global Constraint Compatibility Meta Object to ensure it 
complies with the meta class compatibility model. Class 
With Instance Mutable Meta Objects is part of the 
MetaclassTalk library of mixins (not shown). When 
added as a mixin, the instances of Global Constraint 
Property Meta Object (i.e. Global Constraint) have their 
own metaObject, which can be changed over time.  

Global Constraint Compatibility Meta Class is defined 
as an instance of Standard Class (not shown). As an 
explicit metaclass, it is defined as a subclass of 
Constraint Compatibility Meta Object to enable the 
compatibility model. 
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Figure 10. Encoding Global and Local Constraints 

    

VI. EXECUTING AN APPLICATION-SPECIFIC EXAMPLE 

   The requirement for System A to dynamically inter-
operate with System B is an example of emergent 
properties as shown in Figure 9. In this example, the 
outcome is reflected by Figure 7 with a new UCM 
causally linking System A to System B. This subsection 
explains how the reflective substrate affects base-level 
application-specific dynamic reconfiguration, when a 
global property changes. The following is described: (i) 
how a global property is instantiated using the encoded 
model, (ii) dynamically reconfiguring the global property, 
(iii) how Architectural Change reconfigures the signature 
of a system, and (iv) how a reconfigured system signature 
leads to behavioral and structural change. 

A. Representing a Global Property 
   This subsection illustrates how the reflective 

substrate, is used to create instances of GP1, which 
determines the control style of System A. Figure 10 
shows the base-level and meta-level interactions required. 
System A - GP-1-Control Style Constraint and System A - 
GP-1-Change Property are shown as instances of Global 
Constraint. When System A - GP-1-Control Style 
Constraint and System A - GP-1-Change Property are 
created, their global constraint properties are augmented 

with an appropriate control style provided by Control 
Style Characteristics MetaObjects. System A – GP1 – 
Control Style Constraint conforms to the control style 
shown in Figure 5. System A – GP1 – Change Property 
conforms to the control style shown in Figure 7. 

   For example, when System A - GP-1-Control Style 
Constraint is created, the mixin linearization list drives 
the composition of specific control style metaobjects that 
constrain the configuration of System A’s components to 
ensure cash flow projections and valuation assessment are 
done on-line.  

   MetaclassTalk code fragments are shown below to 
illustrate how this is done. In the example, gp1 is created 
to represent the global property System A - GP-1-Control 
Style Constraint. The specification of this property for 
System A is ‘On-Line Control’. When gp1 is created, the 
metalink policy Class With Instance Mutable Meta 
Objects is applied that enables it to have a unique 
metaclass (this was reported as “a single specific meta-
object private to each base object” earlier). In the case of 
gp1 its particular properties are augmented with System A 
On Line Control Style MetaObject in support of its ‘On-
Line Control’ specification: 

  
gp1 := GlobalConstraint new. 
gp1 constraintSpec: ‘Control Style of System '. 
metaclass := MetaObject  
subclass: #GP1AMetaClass  
instanceVariableNames: ''  
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classVariableNames: ''  
poolDictionaries: ''  
category: 'Dynamic Reconfiguration-Interacting 

Components-Instance Specific Property MetaObjects'  
metaclass: CompositeClass. 
metaclass addMixin: 

ClassWithInstanceMutableMetaObjects. 
metaclass addMixin: 

SystemAOnLineControlStyleMetaObject. 
metaclassInstance := metaclass new. 
gp1 metaObject: metaclassInstance. 
 
   When GP1AMetaClass is created, it is a metaObject 

specific to gp1. Its mixins include System A On Line 
Control Style Meta Object: 

 
MetaObject subclass: #GP1AMetaClass 
 instanceVariableNames: '' 
 classVariableNames: '' 
 poolDictionaries: '' 
 category: 'Dynamic Reconfiguration-Interacting 

Components-Instance Specific Property MetaObjects' 
 metaclass: CompositeClass. 
GP1AMetaClass mixins: 

{ClassWithInstanceMutableMetaObjects. 
SystemAOnLineControlStyleMetaObject} 

 
   System A On Line Control Style Meta Object is a 

mixin with instance variable ‘system Signature For 
System A On Line Control’: 

 
Mixin named: 

#SystemAOnLineControlStyleMetaObject 
instanceVariables: 

'systemSignatureForSystemAOnLineControl ' 
category: 'Dynamic Reconfiguration-Mixins' 
 
   System A On Line Control Style Meta Object 

implements a standardized protocol that is used to set up 
‘system Signature For System A On Line Control’. It is an 
instance of System Signature, which represents the 
behavioral and structural dependencies reflected by 
Figure 5. Below is an example of part of the protocol 
implemented by System A On Line Control Style Meta 
Object: 

 
setUpConnectedComponentDependencies 
systemSignatureForSystemAOnLineControl 

connectComponent: self 
energySectorConditionsComponent  toComponent: self 
cashFlowProjectionsComponent. 

systemSignatureForSystemAOnLineControl 
connectComponent: self cashFlowProjectionsComponent  
toComponent: self valuationAssessmentComponent. 

systemSignatureForSystemAOnLineControl 
connectComponent: self valuationAssessmentComponent 
toComponent: self energySectorKnowledgeComponent. 

systemSignatureForSystemAOnLineControl 
connectComponent: self 

energySectorKnowledgeComponent toComponent: self 
scenarioAnalysisComponent. 

 
   The instance specific metaObject of System A - GP-

1-Change Property also implements the standardized 
protocol. In its case, its System Signature represents the 
behavioral and structural dependencies reflected by 
Figure 7. 

B. Dynamically Reconfiguring a Global Property 
   This subsection illustrates change properties 

affecting existing system properties, which subsequently 
drives the system signature of System A to change. 

   In Figure 10 emergent system properties are 
manifested as System A – GP1 – Change Property. 
System A - GP-1-Control Style Constraint represents an 
existing reconciled global constraint of System A before 
any change. System A – GP1 – Change Property is a 
global constraint that implies a change to the control style 
of System A as reflected by Figure 7. Its particular 
properties are augmented with System B Interoperation 
MetaObject which represents its augmentation of the 
‘On-Line Control’ specification: 

 
newgp1a := GlobalConstraint new. 
newgp1a constraintSpec: ‘Control Style of System '. 
metaclass := MetaObject  
subclass: #NewGP1AMetaClass  
instanceVariableNames: ''  
classVariableNames: ''  
poolDictionaries: ''  
category: 'Dynamic Reconfiguration-Interacting 

Components-Instance Specific Property MetaObjects'  
metaclass: CompositeClass. 
metaclass addMixin: 

ClassWithInstanceMutableMetaObjects. 
metaclass addMixin: 

SystemBInteroperationMetaObject. 
metaclassInstance := metaclass new. 
newgp1a metaObject: metaclassInstance. 
 
   When NewGP1AMetaClass is created, it is a 

metaObject specific to newgp1. Its mixins include System 
B Interoperation Meta Object: 

 
MetaObject subclass: #NewGP1AMetaClass 
 instanceVariableNames: '' 
 classVariableNames: '' 
 poolDictionaries: '' 
 category: 'Dynamic Reconfiguration-Interacting 

Components-Instance Specific Property MetaObjects' 
 metaclass: CompositeClass. 
NewGP1AMetaClass mixins: 

{ClassWithInstanceMutableMetaObjects. 
SystemBInteroperationMetaObject} 

 
   To drive system change, the original metaclass 

properties of System A - GP-1-Control Style Constraint 
are dynamically augmented to reflect the new control 
style of System A by adding the metaclass properties of 
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System A – GP1 – Change Property as additional mixin 
properties of System A - GP-1-Control Style Constraint: 

 
gp1 metaObject class addAllMixins: (newgp1 

metaObject class mixins). 
 
   This is the result after adding the mixins of newgp1’s 

metaclass to the mixins of gp1’s metaclass. The mixins of 
GP1AMetaClass now includes System B Interoperation 
Meta Object: 

 
MetaObject subclass: #GP1AMetaClass 
 instanceVariableNames: '' 
 classVariableNames: '' 
 poolDictionaries: '' 
 category: 'Dynamic Reconfiguration-Interacting 

Components-Instance Specific Property MetaObjects' 
 metaclass: CompositeClass. 
GP1AMetaClass mixins: 

{ClassWithInstanceMutableMetaObjects. 
SystemAOnLineControlStyleMetaObject. 
SystemBInteroperationMetaObject} 

 
   System A On Line Control Style Meta Object and 

System B Interoperation Meta Object each encapsulate a 
System Signature as described previously.  

C. Architectural Change Reconfiguring the Signature of a 
System 

   Ultimately, a change to the global and local 
properties of System A leads to the reconfiguration of its 
system signature. In this implementation, Architectural 
Change regenerates the overall system signature of 
System A by composing the system signature 'fragments' 
of property metaobjects. This drives the behavioral and 
structural realignment of the system. This is shown in the 
code fragment below: 

 
Dependencies>>useSystemPropertiesToGenerateSyste

mSignature 
self systemProperties systemSignatures do: [ :aSysSig | 

self systemSignature updateWith: aSysSig]. 
   The definition of SystemSignature is shown below. 

Aligned with the domain model, it is composed of 
StructuralSignature and BehavioralSignature. 

Object subclass: #SystemSignature 
 instanceVariableNames: 'structuralSignature 

behavioralSignature ' 
 classVariableNames: '' 
 poolDictionaries: '' 
 category: 'Dynamic Reconfiguration-Interacting 

Components' 
 metaclass: SystemSignaturePropertyMetaObject 
 
   The code fragment below shows how the existing 

system signature is regenerated with a system signature 
‘fragment’: 

 
SystemSignature>>updateWith: aSystemSignature 
self behavioralSignature updateWith: 

aSystemSignature behavioralSignature. 

self structuralSignature updateWith: aSystemSignature 
structuralSignature. 

 
   The definition of BehavioralSignature is shown 

below. Aligned with the domain model (See Figure 2), it 
is composed of protocol, required service, provided 
service, operation, state element, and composite 
component dependencies. 

 
Object subclass: #BehavioralSignature 
 instanceVariableNames: 'protocolDependencies 

requiredServiceDependencies 
providedServiceDependencies operationDependencies 
stateElementDependencies 
compositeComponentDependencies ' 

 classVariableNames: '' 
 poolDictionaries: '' 
 category: 'Dynamic Reconfiguration-Interacting 

Components' 
 metaclass: 

BehavioralSignaturePropertyMetaObject 
 
   When Architectural Change regenerates the 

Behavioral Signature of a system it updates the existing 
Behavioral Signature with a new Behavioral Signature 
that reflects any changes in behavioral dependencies: 

 
BehavioralSignature>>updateWith: 

aBehavioralSignature 
self updateProtocolDependenciesWith: 

aBehavioralSignature protocolDependencies. 
self updateRequiredServiceDependenciesWith: 

aBehavioralSignature requiredServiceDependencies. 
self updateProvidedServiceDependenciesWith: 

aBehavioralSignature providedServiceDependencies. 
self updateOperationDependenciesWith: 

aBehavioralSignature operationDependencies. 
self updateStateElementDependenciesWith: 

aBehavioralSignature stateElementDependencies. 
self updateCompositeComponentDependenciesWith: 

aBehavioralSignature 
compositeComponentDependencies. 

 
   The definition of StructuralSignature is shown 

below. Again, in phase with the domain model (See 
Figure 2), it is composed of connected component and 
connected service dependencies. 

 
Object subclass: #StructuralSignature 
 instanceVariableNames: 

'connectedComponentDependencies 
connectedServiceDependencies ' 

 classVariableNames: '' 
 poolDictionaries: '' 
 category: 'Dynamic Reconfiguration-Interacting 

Components' 
 metaclass: 

StructuralSignaturePropertyMetaObject 
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   When Architectural Change regenerates the 
Structural Signature of a system it updates the existing 
Structural Signature with a new Structural Signature that 
reflects any changes in structural dependencies: 

 
StructuralSignature>>updateWith: 

aStructuralSignature 
self updateConnectedComponentDependenciesWith: 

aStructuralSignature connectedComponentDependencies. 
self updateConnectedServiceDependenciesWith: 

aStructuralSignature connectedServiceDependencies. 
 
   In the example up to now, the metaobject of System 

A - GP-1-Control Style Constraint has been augmented 
with the mixin properties of the metaobject of System A – 
GP1 – Change Property. Each mixin of System A - GP-1-
Control Style Constraint encapsulates a system signature 
‘fragment’ that Architectural Change now uses to 
regenerate the overall System Signature of System A.  

   In this case, it is SystemBInteroperationMetaObject, 
which encapsulates the structural dependencies that 
reflect a new communication path linking System A with 
System B, which leads to the Topology Change of 
System A. 

   To do this, SystemBInteroperationMetaObject 
implements the following dependency: 

 
SystemBInteroperationMetaObject 

>>setUpConnectedServiceDependencies 
SystemSignatureForSystemBInteroperation 

connectRequiredServiceNamed: 'Short Term Predictions 
Based On Long Term Predictions' 
toProvidedServiceNamed: 'Short Term Predictions Based 
On Long Term Predictions'. 

 
   SystemSignatureForSystemBInteroperation 

represents the System Signature ‘fragment’ of 
SystemBInteroperationMetaObject. The outcome of this 
metaobject setup operation is a System Signature 
‘fragment’ with a connected service dependency linking a 
required service of System A to a provided service of 
System B: 

 
SystemSignature>>connectRequiredServiceNamed: 

requiredName toProvidedServiceNamed: providedName 
| rs ps | 
rs := self behavioralSignature requiredServiceNamed: 

requiredName. 
ps := self behavioralSignature providedServiceNamed: 

providedName. 
self structuralSignature 

connectedServiceDependencies at: rs put: ps. 
 
   When Architectural Change regenerates the overall 

System Signature of System A, the connected service 
dependency of SystemBInteroperationMetaObject is 
composed with the existing connected service 
dependencies of System A when System A’s Structural 
Signature is updated (See Structural 

Signature>>updateWith: aStructuralSignature shown 
above). 

D. A Reconfigured System Signature Leading to Topology 
Change 

   The regeneration of System Signature drives the 
behavioral and structural realignment of a system. A 
change to Behavioral Signature of System Signature leads 
to a behavioral realignment through Protocol, Interface, 
and/or Internal Change. A change to Structural Signature 
of System Signature leads to a structural realignment 
through Topology Change and/or Substitution. 

   In this implementation, the kind of (new) 
dependency added to System Signature determines what 
type of change needs to be applied. New protocol 
dependencies are manifested as a change to service 
protocols via Protocol Change. New required or provided 
service dependencies are manifested as a change to 
required or provided services via Interface Change. New 
operation, state element, or composite component 
dependencies are manifested as a change to operations, 
state elements, or composite components via Internal 
Change. New connected component dependencies are 
manifested as changes to components and communication 
paths via Topology Change or Substitution. New 
connected service dependencies are manifested as 
changes to connections via Topology Change or 
Substitution. 

   In this example, the topology of System A is changed 
by adding a connection between the Scenario Analysis 
component of System A and the Scenario Analysis 
component of System B. The new connected service 
dependency added to the Structural Signature of System 
A results in this Topology Change, which leads to 
Protocol Change, Interface Change, and Internal 
Change.  

   The Scenario Analysis component of System A is an 
instance of Deployed Component: 

  
Object subclass: #DeployedComponent  
instanceVariableNames: 'name dependencies 

requiredServices providedServices communicationPaths 
compositeComponents internalBehavior ' 

classVariableNames: ''  
poolDictionaries: ''  
category: 'Dynamic Reconfiguration-Interacting 
Components'  
metaclass: ComponentPropertyMetaObject 

  
   Before any change the communication paths (and 

required services) of the Scenario Analysis component 
conform to the original control style of System A (See 
Figure 5): 

 
CommunicationPaths: a 

Dictionary('EnergySectorKnowledge-ScenarioAnalysis'-
>a CommunicationPath ) 
    Required Services: a Dictionary('Knowledge 
Representations of Scenario Predictions'->a 
ProvidedService 'Scenario Predictions of Knowledge 
Representations'->a ProvidedService ) 
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   Topology Change is manifested as a new 

communication path and connection added to the 
communication paths of the Scenario Analysis 
component. After Topology Change, the communication 
paths (and subsequently, after Protocol and Interface 
Change), the required services, conform to the new 
control style of System A (See Figure 7): 

 
CommunicationPaths: a 

Dictionary('EnergySectorKnowledge-ScenarioAnalysis'-
>a CommunicationPath 'ScenarioAnalysis-
ScenarioAnalysis'->a CommunicationPath) 
    Required Services: a Dictionary('Knowledge 
Representations of Scenario Predictions'->a 
ProvidedService 'Scenario Predictions of Knowledge 
Representations'->a ProvidedService 'Short Term 
Predictions Based On Long Term Predictions'->a 
ProvidedService) 

VII. SUMMARY, CONCLUSION AND FUTURE WORK 

This paper explains what software evolution means in 
the context of software components that interact to 
implement services. Using domain analysis and design  
techniques, a domain model is defined of dynamic system 
reconfiguration due to user-driven or computing 
environment-imposed discrete change events. The 
domain model explicitly specifies the relationships that 
exist among changing global or local properties, changing 
behavioral or structural signatures, and intra- or inter-
component change. 

A. Summary 
Based on the complete feature model of the domain 

analysis, Figure 11 summarizes the primary feature 
interactions of dynamic system reconfiguration.  
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Figure 11. Primary Feature Interactions of Dynamic Reconfiguration 

 With respect to the common and variable causal flow 
presented in Section III, the process of dynamic 
reconfiguration progresses as follows: 
• Sensing User-Driven Change and/or Computing 

Environment Change; 

• Interpreting and then representing the particular 
Origin of Change as Global Properties or Local 
Properties with an associated Reconciliation Policy 
(this includes reconciliation with existing System 
Properties); 

• Determining what feasible subsets of Type of Change 
(if any) satisfy the Condition Change Criteria; 

• If necessary, realigning Dependencies and therefore 
possibly also External Interactions and Internal 
Behavior; and 

• Ensuring System Integrity Characteristics when 
enacting change to help maintain overall system 
consistency. 

The domain model of dynamic system reconfiguration 
is a useful conceptual framework for applying systematic 
techniques to engineer constrained software solutions 
within this open problem space. It is a significant artifact 
in the following roles: 

In the role of a software architecture, it specifies a 
comprehensive dynamic reconfiguration capability in a 
manner that can be used to forward engineer dynamic 
systems; 

In the role of a metamodel encoded by a component 
framework, it defines the steps of dynamic change that 
must be implemented by the framework and the ‘plugin 
points’ required for realization of the different aspects of 
the dynamic reconfiguration of a component-based 
software system; and 

In the role of a reference model, it can be used to 
assess how dynamic an existing implementation is, the 
different levels of compliance of dynamic change, and 
how interoperable systems are at different levels of 
dynamism. 

B. Conclusion 
   In the MetaclassTalk implementation, because 

executability is expressed as message passing among 
(pure) objects (where everything is a runtime object 
including classes), it became clear that a constraint could 
be represented by a metaobject which implemented a 
standardized protocol for creating a system signature 
‘fragment’ specific to that constraint. It also became clear 
that system signature fragments could be composed as a 
system signature that represented the fragments of each 
global and local property and the overall signature of a 
system. This is not viewed to change the domain design 
per se but instead is considered to be a utilization of the 
model in a manner that only became apparent when the 
model was encoded with the model execution 
environment. 

It was learned that the explicit metaclass programming 
facility of MetaclassTalk can effectively be used to 
encode the constrained model, as a static representation, 
at the metalevel. Base level objects could then be 
instantiated, based upon these static representations, as 
application-specific interactions. With respect to dynamic 
reconfiguration, it was learned that a base-level object 
could be an instance of a property metaclass that is 
unique to that base-level object. Through MetaclassTalk’s 
mixin mechanism, emergent run-time properties could be 
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dynamically composed that applied just to that object. 
The set of available mixins should also be adjusted 
dynamically. This was not addressed in this paper but is 
the subject of future work. 

   As a simulator of dynamic system reconfiguration, 
the MetaclassTalk programming environment is a build-
time and run-time facility that is useful for validating that 
the domain design can be instantiated within an 
application-specific context. In this case, it is used to 
validate that the domain model is useful for dynamically 
reconfiguring a financial analysis system.   

   As a framework, the simulator implements 'plugin 
points' for realizing the general context of dynamic 
reconfiguration. In doing so, it provides the macro-level 
ordering of operations and the contextual information 
required at each step for a more sophisticated 
implementation. Generally, there is a need for a facility 
that allows backing out and restoring the configuration of 
the system if dynamic change is rejected. 

The reconciliation of change properties with (existing) 
system properties is represented as a distinct action. 
When properties are expressed as constraints this 
reconciliation could be computed through a constraint 
solver (such as the Alloy Analyzer [10] or a different 
implementation of a similar capability). Importantly, 
depending upon the context, there may not be a solution. 
In this case the change may be rejected or the change 
constraints re-expressed in a manner that enables a 
resolution. This issue is not addressed in this paper but is 
the subject of future work. 

   The current implementation of the reconciliation of 
change properties with system properties is based on 
name matching (to associate a change property with a 
system property), with the change property taking 
precedence. A more sophisticated implementation would 
provide a constraint solver-like capability to determine 
whether multiple constraints were compatible. 

Given that change constraints can be reconciled with 
(existing) system constraints, the UML models 
represented estimating the impact of Architectural 
Change upon system integrity as a distinct action. 
Computing this estimate is viewed to be an open problem 
and to be highly dynamic in nature since it is a function 
of the (changing) state of the system at the time the 
estimate is computed. Importantly, depending upon the 
context, a system may change significantly during the 
time it takes to perform this computation to such a degree 
that the estimate is no longer valid. This issue is not 
addressed in this paper but is the subject of future work. 

   This implementation simply accepts the cost of 
enacting reconfiguration when estimating the impact of 
change. A more sophisticated implementation would 
assess this cost taking into account previous results 
(through heuristics), the current configuration (through 
dataflow dependency analysis), and future results 
(through predictive simulation). 

Given that the system will proceed with the change, 
the system model constructs relevant to the change type 
must change and each system integrity characteristic 
relevant to the change type must be assured. The UML 

models represent this in a “don’t care” order. Depending 
upon the context, a particular ordering may be preferred 
(for feasibility, efficiency, or other reasons). This issue is 
not addressed in this paper but is the subject of future 
work. 

   The current implementation of the 'don't care' 
ordering of the application of a change type and its 
integrity characteristics is arbitrary with the change made 
first. The implementation assumes integrity 
characteristics can be assured. A more sophisticated 
implementation would ensure system integrity including 
assessing what was the optimal order of application based 
on current conditions. For example, in the case of 
Substitution, if possible the change could be made during 
a time window when there were not any active 
references. As another example, in the case of Internal 
Change, when a new operation is deployed to replace an 
existing operation, both operations could co-exist for a 
limited time period to ensure continuity of any active 
dependencies on the old operation.  

   Finally, as discussed, a change to system 
dependencies is manifested as realigning external 
interactions or internal behavior through an appropriate 
type of change. Multiple global or local properties of one 
change can be represented as multiple kinds of 
dependency when updating the signature of a system. A 
more sophisticated implementation would establish an 
optimal change strategy when there is more than one way 
to dynamically reconfigure a system to achieve the same 
end result. 

C. Future Work 
The following is future work to be undertaken: 
• Determining, through simulation, statistics, 

heuristics or other means, under what conditions 
a system undergoes adaptation and how 
continuous system evolution is interpreted as 
discrete change events that can be represented as 
global or local properties, including the different 
forms through which system constraints are 
expressed; 

• Investigating the use of a SAT (satisfiability) 
solver for reconciling change properties with 
system properties including the reformulation of 
change constraints in a manner that ensures there 
is a resolution; 

• Investigating dataflow dependency analysis (and 
like) techniques for assessing what the impact 
will be when a particular change is made 
including the problem that a system may change 
significantly during the time it takes to perform 
this computation to such a degree that the 
estimate is no longer valid; 

• Investigating the preferred ordering of the 
application of change types and associated 
system integrity characteristics (for feasibility, 
efficiency, or other reasons); 

• Investigating the cross-coupling effects that can 
occur because of the additive composition of 
change group models, including investigating 
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giving precedence to certain kinds of change and 
the serialization of the application of change 
types across change groups while maintaining 
global consistency; 

• Investigating different levels of control in the 
context of decentralized software evolution (in 
support of load-balancing, change rejection and 
roll-back, fault-tolerance, state splitting and 
merging, and the system’s life cycle); and 

• Refining the domain model and the simulator 
(including their further validation and automatic 
transformation, dynamically adjusting the set of 
mixins, and the use of ‘traits’) when 
implementing this capability in an industrial 
context. 

      A key aspect enabling adaptive computing is the level 
of dynamism supported by the computing environment in 
which a system is running. To be fully dynamic, 
emergent runtime properties must influence not just what 
is computed but how a system computes what is 
computed. Open-ended facilities that enable a system to 
extend itself, based upon self-representation, are viewed 
as mandatory characteristics of any system that can adapt 
to emergent properties.  

   Using the domain model, the greater intent is the 
provision of a set of guiding principles, and an associated 
suite of techniques, which together help to ensure that a 
system, or a family of systems, can better adjust in a 
systematic way to dynamically changing run-time 
environments. 
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