
Fine-Grained and Scalable Message Protection
in Sensitive Organizations

Joon S. Park and Ganesh Devarajan
The Laboratory for Applied Information Security Technology (LAIST)

School of Information Studies
Syracuse University

Syracuse, New York, USA
{jspark@syr.edu, ganesh.devarajan@gmail.com}

Abstract— Today electronic messaging services are indis-
pensable to individuals and organizations. If a message
contains sensitive information, the integrity and confiden-
tiality of the contents created by individual users should be
maintained in an effective manner. Therefore, there is an
urgent need for new mechanisms to support the require-
ment. In this paper we focus on the message protection in
the organization-to-organization service, while many other
researchers have worked on the person-to-person service.
Our approaches can provide effective integrity verification,
tracking mechanisms, and confidentiality at the user-level in
a scalable manner with fine granularity. Furthermore, we
use a set of session keys for each message to provide more se-
cure communications, maintaining scalable key management
by employing a key hierarchy. We describe the mechanisms
of our approaches and show their feasibility by describing
a prototype system that we developed.

I. INTRODUCTION

When data is transferred between different sensitive
divisions, domains, or even organizations, reliable control
must be taken to maintain the integrity and confidentiality
of the messages and files that were passed. In particular,
if security levels of users are different, information must
not flow from the high level to the low level [1]–[4].
In such cases we should verify the security levels of
the users and the data being transferred. To validate
data being transferred between different organizations, we
enforce devices such as Guards, which are also known as
Boundary Controllers, or Cross Domain Solutions (CDS).
Any critical information that is to be transferred from
Organization A to Organization B has to pass through the
Guard, which checks, filters, and sanitizes data between
the organizations based on policies. The Guard executes
pre-defined security policies that are based on the trust
level, guidelines, rules, directives, and instructions. Basi-
cally, when we interlink two organizations of different se-
curity levels, we should prevent sensitive data from being
transmitted to unauthorized organizations or persons. The
Guard also maintains logs for all requests and responses
that are passed across organizations.

Considering message source and destination, generally,
there are two different kinds of services: person-to-person
and organization-to-organization. The former is just like
ordinary e-mail service, where each sender selects the

Fig. 1. An Example of Organization-to-Organization Messaging
Services.

receiving person. The latter is for organization-level com-
munications (e.g., formal military messaging systems [5]–
[7]), where the sender does not know who is going to
read the message in the receiving organization. When
we need security in person-to-person service, we can
easily use existing user-level security services such as
PGP [8], [9] or PKI [10]–[12] tools. However, in the
case of organization-to-organization service, such user-
level security cannot be used. When sending, the sender
does not know whose cryptographic key should be used
to encrypt or sign the message, because the receiving
individual is not yet determined by the sender. Figure 1
shows a typical example of organization-to-organization
messaging services. A user (drafter) can initiate commu-
nication by writing or revising a message. Before the
message is sent to another organization, the coordinator
reviews the message and requires necessary changes in
the message based on the organization’s policy. If the
message is ready to be sent, the releaser of the sending
organization sends the message to the distributer in the
receiving organization. Once the message is delivered,
the message is distributed to the corresponding recipients
based on the organization’s current policy.

In this paper we focus on the message protection
in the organization-to-organization service, while many
other researchers have worked on the person-to-person
service [13]–[18]. Our approaches can provide effective
integrity verification, tracking mechanisms, and confiden-

64 JOURNAL OF SOFTWARE, VOL. 2, NO. 6, DECEMBER 2007

© 2007 ACADEMY PUBLISHER



tiality at the user-level in a scalable manner with fine
granularity. Furthermore, we use a set of session keys for
each message to provide more secure communications,
maintaining scalable key management by employing a key
hierarchy. We describe the mechanisms of our approaches
and show their feasibility by describing a prototype sys-
tem that we developed.

II. RELATED WORK

A. Boundary Control

The technical solution for preventing unauthorized re-
lease of sensitive information between different domains
is referred to as boundary control. A boundary controller
is a software solution designed to enforce the rules and
policies of an organization to control the information flow
between the organization and the outside world, as well
as between internal units. A high-accuracy boundary con-
troller is essential in supporting the information sharing
that is required within an organization where there are
groups that need to share some, but not all, information
with different levels of security. Technically, a boundary
controller is an automated guard whose generic operation
is depicted in Figure 2. For future tracking of transactions,
it maintains log files for both sending and receiving
organizations.

Fig. 2. A Generic Operation of Guard.

The Advanced Research Guard for Experimentation
(ARGuE [19], [20]), developed by the NAI labs, is one
of the working models of boundary controllers. Once a
client initiates a request, it is sent to the ARGuE where
the request is processed, and if it does not violate any of
the policies, it is sent to the server on the other end. The
processed result is sent back to ARGuE where verification
of the security policies takes place and the response is
given to the other end. Simultaneously, logs are developed
and maintained for each and every transaction that takes
place between the organizations.

The Air Force Rome Laboratory (AFRL) devel-
oped the Imaginary Support Server Environment (ISSE)
Guard [21], [22]. ISSE provides a secure interface in the
transaction of softcopy information between two hierar-
chically varying divisions within local or wide-area net-
works. The ISSE Guard is built in with Common Guard
Interface (CGI). The ISSE Guard supports bi-directional
traffic from High to Low or from Low to High security

clearance. The ISSE Guard provides the functionality
required for securely connecting, validating, downgrad-
ing, and transferring information between systems and
networks operating at different security clearance levels.
It permits secured transaction of digital images, files, and
texts between organizations of different security clearance
levels by downgrading the information, if transferred from
organizations of high security levels to organizations with
low security clearance. These are built in with email and
file-scanning, sanitizing, and downgrading tools that work
on XML-based products.

The Cross-Domain Solution (CDS [23]) was developed
by the Department of Defense, and the Department of
Navy. CDS was developed to send and receive data
between different levels of organizations. It is a blend of
technologies (i.e., guard, components), policies (i.e., rules,
instructions, and procedures), and threat environments
(i.e., reliability, trust level, and security clearance) in
which it should be deployed. NetSec [24] developed a
CDS system that offers high assurance for data transfer,
but its data transfer takes place in one direction alone.

The Message Analysis Downgrade and Dissemination
(MADD [21]), developed by AFRL, is a product de-
veloped to sanitize or downgrade the message and then
pass it on to the user at the other end. This works
only for well-formatted messages. It incorporates the
message extraction technologies developed by AFRL to
enable automated filtering, downgrading, sanitization, and
dissemination, which are in the USMTF (US Message
Text Format [25]).

B. Key Management

Alk and Taylor [26] proposed a cryptographic ap-
proach in a tree hierarchy based on modular exponen-
tiation, which is the basis of current public-key crypto-
systems [27]. This approach is effective for a key hier-
archy that is an arbitrary partial ordering, but expensive
regeneration of all the other existing values is required
when a new class is added to the tree. Their modular
exponentiation is not scalable, because it will require
many calculation changes to be made in the rest of the
system in order to accommodate this new depart-ment
within the system. The modular exponentiation method
cannot be adapted for the entire system, as there are
possibilities of the same key value being generated since
all the values are generated using one large number N.
In addition, a large amount of storage space is wasted in
storing the key values of the nodes.

Sandhu [28] proposed a key generation scheme for a
tree hierarchy considering the access control problem in
a system where users and information items are classi-
fied based on their security classes. In this scheme, dif-
ferent one-way hash functions are used to generate child
keys from parent keys. One-way hash functions are easily
computable, but it is computationally difficult or infeasi-
bly difficult to invert them [29]. One-way hash functions
are selected based on the hierarchical names of the child
nodes. The main advantage of this scheme is that if a new

JOURNAL OF SOFTWARE, VOL. 2, NO. 6, DECEMBER 2007 65

© 2007 ACADEMY PUBLISHER



child node is added to the hierarchy tree, then the keys for
its parent nodes need not be recomputed. Thus, changes
to the hierarchy are conveniently accommodated by the
scheme. This makes Sandhu’s key generation scheme
much more scalable than the Alk and Taylors [26] modu-
lar exponentiation method. Although Sandhu’s scheme is
faster than the modular exponentiation method, the chief
disadvantage of his tree hierarchy approach is that the
time it takes to generate the necessary keys for every node
is excessive when the tree size is very deep (i.e., tall).

Zheng et al. [30] proposed an approach based on partial
ordered sets, called posets. The authors identify two
key generation approaches: one that provides an indirect
access to the child nodes, and a second that provides
direct access to the child nodes in the hierarchy tree. The
indirect access technique requires a user to traverse all
the intermediate tree nodes to calculate the key for a low-
level node. The direct access approach allows direct key
calculation of a low-level node without traversing other
intermediate nodes.

Our key management approach is more related to
Sandhu’s approach, which is used in Zheng’s direct-
access method. We extend the one-way hash-function-
based approach with the concept of session keys and their
secure distribution for a trusted message system.

III. OPERATIONAL SCENARIOS

As we mentioned in Section I, we focus on the message
protection in the organization-to-organization service in
this paper. When Alice is sending a message to Bob in a
different organization, Alice composes the message and
then digitally signs it. Optionally, the message can be
encrypted for providing confidentiality. The signed packet
is sent to the guard, where the contents of the message
are verified with current policies that are set for message
transfer. If the message was encrypted, the guard should
be able to decrypt it by using the corresponding key.
It is also possible for the guard to encrypt the message
after verification. In most currently available approaches,
if all the contents are allowed for transfer by the policies,
then the guard strips out Alice’s signature and appends its
own signature. This message with the guard’s signature
is sent to Bob. Subsequently, Bob verifies the guard’s
signature and retrieves the contents. Typically, Bob does
not need to verify that the message was originally signed
by Alice, because Bob trusts the guard. If the message
was encrypted, Bob can decrypt part of the message based
on his security level. In the meantime, the guard creates
entries in the log files for future reference purposes.

The operation can be extended with internal reviewers.
An internal reviewer (IR) verifies the individual data
(message) sent by each user and compiles them into a
single data unit before sending it to the guard. Multiple
internal reviewers can verify the data before sending it to
the guard. Figure 2 illustrates how the data is integrated
when we have three users compiling data to be sent
to the other organization. The integration unit combines
these messages and sends them to IR1. The integration

unit strips out the signature of the preceding users and
holds just the signature of the last user. This procedure is
followed until it reaches the final user. After the message
is integrated into one unit, it is sent to the IR1. When the
data come out of IR1, the message will have only IR1’s
signature. Similarly, when the message comes out of IR2,
the signature of IR1 will be stripped out and the signature
of IR2 will be appended. Once both internal reviewers are
done with their verification, the message with the IR2’s
signature is sent to the guard.

This conventional operation might be the simplest
solution when a message is written by a single user
and user-level verification is not required at the time
of message receiving. However, when multiple users,
especially with different security levels, are involved in
the contents of the same message before it is transferred
to the final receiving organization, it is challenging to
provide and verify message integrity in a scalable manner
with fine granularity. When message confidentiality is
needed, the scalability problem becomes more critical
in terms of key management. Furthermore, it is not
always possible for the recipient to track the users who
are involved in the message creation on the senders’
side. Although the transactions are logged, it can still
be difficult to track especially when the log file of
the senders’ organization is maintained by a different
administration, which is not unusual. To overcome
these problems, we propose the following advanced
operational scenarios for providing message integrity and
confidentiality.

Advanced Operation:
Each user who is involved in the message signs and/or

encrypts his or her portion individually. After the guard
verifies the compiled message and individual signatures,
it attaches its signature to the message. Optionally, the
guard can encrypt portions of the message by using
different keys based on their security levels. The final
message includes the guard’s signature as well as the
individual signatures. Later, the recipient can verify the
individual signatures and decrypt some portions of the
message based on his or her security level by using the
corresponding keys.

This advanced operation will provide effective integrity
verification and tracking mechanisms at the user level.
Furthermore, it increases service granularity. However,
it will also introduce the scalability issue in terms of
signature maintenance and key management. In the fol-
lowing sections, we describe how we can support the
above proposed scenario in a scalable manner with fine
granularity .

IV. SCALABLE AND FINE-GRAINED DIGITAL
SIGNATURE SCHEMES

When we have multiple users compiling a single mes-
sage, including shared contents, metadata, policy, and
so on, the integrity of the contents created by individ-
ual users needs to be maintained in a scalable manner

66 JOURNAL OF SOFTWARE, VOL. 2, NO. 6, DECEMBER 2007

© 2007 ACADEMY PUBLISHER



with fine granularity. There is an urgent need for new
mechanisms in a trusted content-sharing environment to
support multiple signers of the same message, which can
be dynamically updated, with autonomous protection and
maintenance mechanisms. In our previous work we iden-
tified and compared three different binding mechanisms
of digital signatures, including monolithic, autonomous,
and chained schemes [31], [32]. The original work was
designed and implemented for digital certificates. In this
paper we apply the digital signature schemes with ex-
tension to the organization-to-organization messaging ser-
vices to support the advanced operation described above
that provides fine-grained and scalable user-level integrity
to messages.

A. Monolithic Signature Scheme

Of all the signature schemes, the simplest case is when
the contents could be signed by one single authority. We
define such case as monolithic, depicted in Figure 3. In
this case, however, it is difficult to track the integrity at the
user level, especially when multiple users with different
security levels are involved in the same message. In other
words, it is hard to check who provided specific contents
to a message and to support a fine-grained integrity check
unless a log file is maintained with detailed user-level
histories. For tracking, the system has to go through
the log files generated during the transactions and then
trace the perpetrator. However, maintaining a powerful
logging database itself, which should be protected in a
sensitive system, is not a trivial work. Even if such a
database exists, it usually takes a long time to track the
necessary data, and the accuracy of the tracking depends
on the logging mechanisms and information. Sometimes,
the message-sending organization does not allow other
organizations (including the receiving organization) to
access its log files. Furthermore, in a traditional scheme,
each time a new portion is added to the message, the
signer should sign the entire message. This approach is
neither efficient nor scalable for a large messaging system,
especially if different portions of the same message need
to be signed by different authorities. Finally, generating
and maintaining log files that can support our advanced
operation become complex, especially when messages are
merged and separated frequently by users with different
security levels.

B. Autonomous Signature Scheme

In the autonomous scheme, depicted in Figure 4, a
binder of the original contents and the new message are
digitally signed by an authorized person. A binder can be
any unique portion in the original message. For instance,
the message ID of the original message can be a binder
to other linked messages in a general case. It is also
possible to link a specific portion of the message to others.
For instance, in Figure 4, if Contents X and Y in the
new message are related to Contents A in the original
message, Contents A would be chosen as the binder

Fig. 3. Monolithic Signature Scheme.

between the messages to maintain their relationship. The
main advantage of the autonomous scheme is that the
binders and contents are loosely coupled. In other words,
even after the original and new messages are linked by
the binder, we can still modify the other portions of the
original contents without breaking the link to the new
message as long as the binder and the corresponding
signature remain the same. One binder can be used to link
different messages and the same message can be linked
by different binders (a many-to-many relationship). The
linking mechanism is analogous to the situation where
a person can use any ID card to prove that he or she
is the owner of his or her credit cards, as long as the
names on the credit card and ID card match. This scheme
provides fine granularity and scalability because only
relative portions of a message are linked to new messages
by digital signatures.

Fig. 4. Autonomous Signature Scheme.

Once the entire message is compiled by the au-
tonomous scheme, the message is sent to the Internal
Reviewer, who verifies each and every part of the message
to confirm that the message does not violate company
policies. After this screening process the integrated mes-
sage is sent to the guard. If the message does not violate
policy settings, then it is allowed to pass through to
the other organization. When the user from the other
organization requests this message, the guard annexes its
own signature by the autonomous scheme just as the users
did on the message. If the requesting organization is in a
lower security clearance, then the guard downgrades the
message to the security clearance level of the requesting

JOURNAL OF SOFTWARE, VOL. 2, NO. 6, DECEMBER 2007 67

© 2007 ACADEMY PUBLISHER



domain. However, if there is any portion of the data that
is violating policy settings, it is immediately sanitized or
downgraded. These kinds of activities are recorded in the
log file. After the filtering and scanning process, the file
is passed on to the requesting organization.

C. Chained-Signature Scheme

The chained scheme, depicted in Figure 5, is a par-
ticular case of an autonomous scheme, in which we use
the digital signature of the original message as a binder.
In this case the binders and other linked messages are
tightly coupled, which means that once the original and
new messages are linked by the binder (i.e., the signature
of the original message), we cannot modify any portion
of the original message without breaking the link to the
previous signatures. Each signed entity can produce only
one unique binder, digital signature, with the same key
in the chained scheme. Once the digital signature has
been generated, we cannot change any portion in the
signed message without breaking the integrity of the entire
original message, while one signature can be linked to
many other new messages (a one-to-many relationship).
The linking mechanism is analogous to the situation in
which a person should present his or her particular ID
(such as a passport) in a foreign country to prove that he
or she is the owner of his or her credit card because that
country does not understand or trust other IDs such as a
driver’s license card issued by another country.

Fig. 5. Chained-Signature Scheme.

Since we use the signature of the original message
as the binding information, the flexibility of adding new
contents in the compiled message is going to be stricter
than in the autonomous scheme. However, at the same
time, it provides strong integrity verification and it still
provides a finer granularity than that of the traditional
approaches. Even a slight modification in the header or
body part of the message will be reflected in the signature.
If we make any modification in the original message,
then the corresponding signature should be regenerated
in the message that follows. In this scheme the messages
are tightly coupled. When the Internal Reviewer verifies
the message before sending it to the guard, it can easily
determine the amendments made by other users. The
guard annexes its own signature by the chained scheme
just as the users did on the message. The rest of the

functionalities of the guard are similar to those described
in the autonomous scheme.

V. SCALABLE AND FINE-GRAINED KEY
MANAGEMENT

A. Hierarchical Key Structure

As a sensitive organization, we consider a military
organization to demonstrate our proposed ideas. In such
an organization, typically, each user-group can be cat-
egorized according to its privileges (i.e., clearance). A
group with the same privileges can be represented by the
following set of variables: {U, L, P, S, Ki, R}, where U
= User, L = Clearance Level, P = Partition, S = Session
Number, Ki = Session Key for the clearance level i, and
R = User-Key Relation.

In our case, a session number is a message ID. The
variable R in the expression is an important part of the
expression, as it concerns the users and the keys that
they possess. This mathematical expression binding user
and key is shown bellow.

User U owns a key Ki if and only if (U, Ki) ⊂ R

Since we are focusing on formal military message
services (described in Section I) that exchange messages
between organizations rather than between individuals,
usually, the system does not determine a particular re-
cipient when the message is being created. This implies
that we should not use simple user-dependent security
mechanisms. For instance, a sender should not encrypt a
formal military message by using a particular receiver’s
key. Instead, the message should be encrypted by a group
key of the sender side (e.g., a group key for a secret
level) so that any recipient in the group (e.g., secret level
or higher) is able to decrypt the message. Technically,
we could use an independent key for each security level.
However, this may increase complexity and cause a
significant scalability problem, especially when we use
different key sets for different messages. In our approach,
therefore, we consider a simplified key hierarchy that
falls into totally ordered sets: Top secret � Secret �
Classified � Unclassified. This means a user with top-
secret privileges will have the ability to generate keys for
secret, classified, and unclassified. Similarly, users with
secret privileges will have the ability to generate keys for
classified and unclassified, but will not have the ability to
generate a key for a top secret. Basically, we use a hash
function to generate the keys. In this way we can generate
keys for different security levels of users, while the same
function is applied in all of the nodes that generate keys
for the lower lying nodes. The nodes in the unclassified
section (i.e., the lowest security level in our example) will
not be able to generate any other keys. Therefore, it is
unnecessary to distribute the function to the leaf nodes.
When one adds a new node, one must determine that
node’s security-level to assign it the appropriate group
key.

68 JOURNAL OF SOFTWARE, VOL. 2, NO. 6, DECEMBER 2007

© 2007 ACADEMY PUBLISHER



Fig. 6. Fine-Grained and Scalable Key Management Scheme.

B. Key Management Mechanisms

In our key management scheme, each security level is
assigned a group key, and higher level keys can be used to
obtain (generate) lower level keys. Technically, there is a
centralized key distribution system (KDS) that initiates
the session-key distribution services for each session
(i.e., each message in our case) to individuals based on
their clearance levels. It picks a secret random number,
called secret session number (SSN), for each message and
generates the highest session key (e.g., top secret) for the
message by using the hash function. Alternatively, we can
use a keyed message digest to generate the highest key
for the message. In this case we can make the random
number public, called public session number (PSN), while
a master secret key is required for the KDS. Otherwise,
anybody could generate child keys by using the publicly
known hash function and the PSN. More details are
described as follows.

Each message has a unique message ID, which is
mapped to a random number RS (either SSN or PSN).
This mapping information is recorded in the KDS. We do
not need to store the session keys in the KDS because
the session keys can be generated on-the-fly if necessary.
Consequently, the user can generate the corresponding
lower level keys. This saves storage cost and enables more
secure and scalable key management than conventional
approaches. The corresponding session keys based on the
user’s clearance are generated out of the highest session
key, which is generated by the KDS and is securely
distributed to the user. Lower level keys can be generated

by the KDS or the user autonomously, based on the
user’s clearance. We assume that each user has a shared
secret key with the KDS. Hence, the KDS encrypts the
highest session key for the user with the shared secret
key, and sends it to the user. The user can decrypt the
encrypted session key, using her shared secret key with
the KDS. The sessions are totally independent of each
other. This means that the higher-level keys in one session
cannot generate lower-level keys in different sessions, thus
ensuring that the key issued to the user works only for
the message that the user is trying to view.

Figure 6 illustrates detailed procedures for either
using an SSN with a publicly known hash function or
a PSN with a keyed message digest. For simplicity, we
use the former case in the following description, where
only the KDS picks up and knows the message’s SSN,
although we implemented the latter case, where the
message’s PSN is public and the KDS’s master secret
key is required to generate the highest-level session key
out of the PSN using a keyed message digest function. In
this example, there are two users that will communicate
using our proposed ideas. Suppose the sender (Alice) has
a secret clearance, and possesses a shared key, Ka, with
the KDS. The receiver (Bob) has confidential clearance
and possesses shared key, Kb, with the KDS. Initially,
Alice logs into the KDS after authentication and requests
a session key. Every time a session key is needed, the
KDS starts with the session’s (i.e., the message’s) SSN
that it previously acquired. When generating a session
key, the KDS uses the random number (RS), SSN in
this example, and other background information, such as

JOURNAL OF SOFTWARE, VOL. 2, NO. 6, DECEMBER 2007 69

© 2007 ACADEMY PUBLISHER



the name of the classification level, as input for the hash
function. The process works only one way, meaning that
lower keys can be generated from higher keys, but not
the reverse. To generate the secret-level session key, KS ,
for Alice, the KDS performs the following consequent
operations.

A1. KT = H(SSN, Top-secret);
KDS generates a top-secret-level session key

A2. KS = H(KT , Secret);
KDS generates a secret-level session key

Once the proper level key is generated, the KDS
encrypts KS with Alice’s shared key, Ka, and sends
the encrypted data to Alice. The KDS never sends
any information about KT because Alice’s clearance is
Secret. Since Alice knows Ka, she can decrypt the data
to obtain the secret-level session key, KS . Alice can
then use KS to encrypt the secret-level contents in the
message she is writing. Alice also has the ability to
create lower-level keys for lower-level encryption, which
is important when she needs to work on contents that
possess lower classification levels. For instance, she can
obtain the confidential-level key by applying the hash
function on KS and other background information as
follows:

A3. KC = H(SSN, Confidential);
Alice generates a confidential session key

Once KC is generated, Alice can encrypt that part of
the message with KC .

After the message and its encrypted contents have
been sent to the recipient’s organization, those users
with the required privilege are allowed to access the
correspond-ing parts of the message. In our example, Bob
logs into the KDS and requests his session key for the
message, presenting the message ID. The KDS maintains
the mapping information between the message ID and
the corresponding SSN so that it finds the message’s
SSN and generates the confidential-level session
key, KC , for Bob, whose clearance is Confidential. To
generate KC , the KDS performs the following operations:

B1. KT = H(SSN, Top-secret);
KDS generates a top-secret-level session key

B2. KS = H(KT , Secret);
KDS generates a secret-level session key

B3. KC = H(SSN, Confidential);
KDS generates a confidential session key

Once the key with the proper security level for Bob is
generated, the KDS encrypts KC with Bob’s shared key,
Kb, and sends the encrypted data to Bob. Since Bob knows
Kb, he can decrypt the data to obtain the confidential-level
session key, KC . Bob can then use KC to decrypt the
confidential-level contents in the message. Bob can only

view the contents of the message encrypted with KC (not
with KS) because he cannot generate the KS based on his
clearance.

VI. IMPLEMENTATION

A. Overview

Based on the advanced operational scenario and the
support mechanisms described in the previous sections,
we developed a prototype. The prototype was imple-
mented in the Java remote method invocation (RMI)
platform with XML digital signatures [33]. The RMI
framework provides a platform for developing distributed
client-server applications. We employed the Java cryp-
tographic extensions (JCE) APIs in our implementa-
tion. JCE is a set of packages that provides frame-
work and implementations for encryption, key genera-
tion, key agreement, and message authentication code
(MAC) algorithms. JCE integrated into the Java 2 SDK.
The KDS (Key Distribution System) is implemented by
KMS (Key Management Server) in our implementation
that is an RMI server object. The users are mapped as
corresponding RMI clients. The entire application was
developed using the XML Security Suite in Java devel-
oped by the IBM Alpha Works. We also used the Java
Security Package, which provides policy-based access
control, X.509 v3 [34], [35] implementation of certificate
interfaces, and tools for creating and managing security
keys and certificates. Figure 7 is the activity diagram of
our implementation that shows the operations carried out
in each module and the information between the modules.

The KMS initially registers itself with the RMI registry,
a naming service in the Java RMI framework, to make it
available to others. The User is configured as an RMI
client. The User class module can get a reference to the
KMS server object by querying the RMI registry. Once it
gets a reference to the KMS server object, then the user
class module can access the methods of the KMS just as
it can access any other method calls. The user interface
class module has a graphical user interface (GUI) that
is implemented using Java Swing packages. This class
module basically gets all the user inputs and commands
through the GUI and passes them to the user class module
for further processing and sends the processed result back
to be displayed in the GUI.

Only authenticated users are supplied with the keys for
that session. If the user, say Alice, requests the composing
of a new message, the screen opens up, depending on her
role and security clearance. The author has the privilege
of downgrading her security level to compose a message
for the domains of lower security levels. After that,
Alice encrypts, signs, and then sends the message to the
XML guard where the message is deposited in the file
repository. Now, supposing another user, Bob, wants to
open this message and modify a few fields. All that he
needs to do is log into the system, then post a request
to the XML guard. Here, the request is verified and his
security level (i.e., clearance) is crosschecked with the
security level of the message. If the security level of the

70 JOURNAL OF SOFTWARE, VOL. 2, NO. 6, DECEMBER 2007

© 2007 ACADEMY PUBLISHER



Fig. 7. Activity Diagram of XML Guard Operation.

message is higher than that of Bob, then the message is
sanitized (i.e., the contents which are not to be revealed
for the requesting domain are all stripped out) and then
passed to the requesting user. If the security level of
the message is lower than that of the requesting user,
then no sanitizing operation is performed and the entire
message is passed on to the requesting user. Similarly,
if the security levels of the message and the requesting
user are the same, then there is no sanitizing operation
performed. Now, the modified file is encrypted and signed
and then sent to the XML guard. In the XML guard,
the modified file contents are verified and then deposited

in the file repository. Before sending the message across
the other domain, the XML guard signs the integrated
message based on either the autonomous or chained
schemes described in Section IV and passes it to the
requesting user or organization.

B. Key Management Modules

According to our proposed ideas, the messages are
generated for different levels of authentic users. In our
implementation, all the messages are created and sent as
Extensible Markup Language (XML [36]) files by the
XML generator, and then transmitted to the receiving

JOURNAL OF SOFTWARE, VOL. 2, NO. 6, DECEMBER 2007 71

© 2007 ACADEMY PUBLISHER



Fig. 8. Key Generator Modules.

organization. The Open Decrypted Message module opens
the XML file that was sent, extracts the encrypted mes-
sage, and then decrypts the message, if and only if the
user has sufficient privilege to decrypt a message of that
security level.

In our implementation we developed two key generator
modules since we use a PSN and a keyed message digest
algorithm for top-level key generation: one for the top-
secret key generation and one for the rest of the keys.
If we were to use an SSN and a non-cryptographic hash
function, we would need only one key generator module.
Figure 8 shows the inner details of our key generator
modules and their functions.

The Top-Secret Key Generator module employs a mes-
sage authentication code (MAC), also called a keyed
message digest, which is basically a message digest with
an associated key to generate the Top-Secret key of the
root node (the highest Security Level in the tree). The
basic principle is that someone with the same key can

produce the same keyed message digest from the same
input data. This module takes three parameters as input,
and, subsequently, outputs the session key of the Top-
Secret node. The keyed message digest takes a public
session number (PSN) and the KDS’s master secret key
as input, which it then digests to generate a message
digest. The key generator module process XOR with the
digest and the security level name of the root node (e.g.,
Top Secret in our example), then generates a bit array
as an output. The resulting bit array is then passed to a
parity checker, where the proper parity is added to the
key. We used a keyed message digest instead of a simple
message digest in order to secure the process of digesting
the RS. Even if a PSN is compromised or made known,
an attacker needs the Secret MAC key to gener-ate the
digest. This secret key can be stored in a secure location
by adding more security to the whole process.

The Non-Top Secret Key Generator module employs

72 JOURNAL OF SOFTWARE, VOL. 2, NO. 6, DECEMBER 2007

© 2007 ACADEMY PUBLISHER



just a regular message digest. The basic principle behind
this is that anyone with the same input text can supply it to
the message digest and get the same output. As depicted
in Figure 8, this module contains the same components as
the Top-Secret Key Generator module does, except that
message digest replaces the keyed message digest. The
message digest takes just one parameter as input; in this
case, it takes a key as an input and digests it into a bit
array. The output bits are then XORed with the security
level name of the current node in the hierarchy. Finally,
the parity bits are set properly to produce a well-formed
key. This process is applied repeatedly as we traverse the
tree nodes recursively until we arrive at the destination
node for which we need to generate the session key.

Both the KDS and user modules have an instance of
the Non-Top Secret Key Generator module, but only the
KDS has the additional instance of the Top-Secret Key
Generator module. Again, this is because a user should
not, under any circumstances, be able to generate the
session key for the highest security level (Top Secret) in
the hierarchy tree.

In our current implementation, both the KDS and user
modules contain an instance of the Key Generator mod-
ule. The only difference is that the user module does
not have the root key generator function, because in no
circumstances should the user be able to generate by
itself the root session key—the highest level in the hier-
archy. The user module has the component represented
by only the lower-right box, while the KDS module has
the component represented by both the lower-right and
upper-right boxes. An alternative design or architectural
change would be to implement the Key Generator mod-
ules and KDS in different locations: either distributed
or centrally located. In our implementation, we use the
distributed architecture. The key generation modules are
distributed to the KDS and each user’s machine. This
architecture enables autonomous key generation in each
user’s machine, avoiding single-point-of-failure problems
while provid-ing higher performance. However, the im-
plementation of this distributed architecture is more com-
plex, and key revocation is a challenging problem. The
centralized architecture—where a central location (such
as a KDS) has common key generation modules for the
participants—is easier to implement and more effective
for key revoca-tion than the distributed architecture, be-
cause all the keys are generated and managed from a cen-
tral point. However, such a centralized architecture does
not allow autonomous services, cannot avoid the single-
point-of-failure problem, and decreases the quality of the
performance. More details about this implementation are
available in [37].

C. Digital Signature Modules

Table I summarizes the tradeoffs of the digital signature
schemes based on the results of our experiments. We will
begin with the level of convenience. In the monolithic
scheme only one user compiles the entire message and

hence the message integration is very easy. In the au-
tonomous and chained schemes, however, we have multi-
ple users integrating the message and they need to specify
the binder information for the integration. In the chained
scheme we use just the signature of the previous message,
whereas in the autonomous scheme we could use any part
of the header or message as binder information. The user
determines which binder he or she is going to employ in
the autonomous scheme. Therefore, relatively, it is more
convenient for the user to integrate the messages in the
chained scheme than in the autonomous scheme.

In terms of message discovery, which implies the ability
to spot a particular message written by a specific author, it
is fastest to retrieve the entire message in the monolithic
scheme because there is no links between the messages.
However, in the autonomous scheme, the messages are
linked based on a shallow model with many branches.
In the chained scheme, typically, the messages are linked
through long chains. Therefore, it is slower to retrieve
the entire message in the chained scheme than in the
autonomous scheme.

As we described in Section IV, the binding strengths of
the monolithic and chained schemes are tightly coupled,
which means that even if one portion of the message is
modified, the integrity of the whole message following
it is lost as well. However, the binding strength of the
autonomous scheme is loosely coupled, which means
the contents in the messages can be modified without
breaking the message links as long as the binder remains
the same.

Branching of messages is not available in the mono-
lithic scheme, very high in the autonomous scheme,
and moderate in the chained scheme. In the monolithic
scheme, a single user inputs all the contents in the same
message, so there is no branching between messages. In
the autonomous scheme, branching with other messages
can be widely done via various parts of the messages
as binder information. In the chained scheme, we can
use only the signature of the previous message as binder
information, so the messages are not widely branched, but
they can be branched in a long chain.

In terms of control granularity, the autonomous scheme
provides the finest granularity because part of the same
message can be used as a binder that is linked to other
messages. On the contrary, the monolithic scheme pro-
vides a course granularity because the entire message is
signed by a single user and used as the minimum control
unit. The chained scheme provides a finer granularity than
the monolithic scheme because, even though we do not
have much control on the original message, we can add
new contents with fine granularity. Therefore, the level of
scalability maps to the same order as the granularity of
the signature schemes.

Finally, we consider the mapping relationships between
linked messages. Obviously, there is only a self-mapping
available within the same message in the monolithic
scheme. In the autonomous scheme, various parts of the
original message can be used as a binder, which can be

JOURNAL OF SOFTWARE, VOL. 2, NO. 6, DECEMBER 2007 73

© 2007 ACADEMY PUBLISHER



Characteristics Monolithic Autonomous Scheme Chained Scheme
Level of Convenience High Medium Low

Message Discovery Medium Low Slow
Binding Strength Tightly Coupled Loosely Coupled Tightly Coupled

Branching of Messages N/A Wide Deep
Control Granularity Coarse Fine Medium

Scalability Low High Medium
Mapping Relationship Self Many-to-Many One-to-Many

TABLE I
CHARACTERISTICS OF THE DIGITAL SIGNATURE SCHEMES.

linked to multiple other messages. Therefore, we define
the mapping relationship as many-to-many in the scheme.
In the chained scheme, only the signature of the original
message can be used as a binder, but it can be linked
to multiple other messages. Therefore, we define that
mapping relationship as one-to-many.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we proposed novel approaches for the
message protection in the organization-to-organization
messaging service. Our approaches can provide effective
integrity verification, tracking mechanisms, and confiden-
tiality at the user-level in a scalable manner with fine
granularity. Furthermore, we used a set of session keys for
each message to provide more secure communications,
maintaining scalable key management by employing a
key hierarchy. We described the mechanisms of our
approaches and show their feasibility by describing a
prototype system that we developed. For our current
prototype we used XML technology with Java security
packages. For our future work, we plan to extend the
system’s capability for interoperability between different
message formats and semantics via the application of
ontology [38]–[40].

REFERENCES

[1] D. Bell and L. Lapadula, “Secure computer systems: Mathematical
foundations,” The MITRE Corporation, Bedford, MA,” Technical
Report, March 1973, mTR-2547.

[2] D. E. Denning, “A lattice model of secure information flow,”
Communications of the ACM, vol. 19, no. 5, pp. 236–243, 1976.

[3] C. E. Landwehr, “Formal models for computer security,” ACM
Comput. Survey, vol. 13, no. 3, pp. 247–278, 1981.

[4] L. J. LaPadula and D. E. Bell, “Mitre technical report 2547,
volume ii,” Journal of Computer Security, vol. 4, no. 2-3, pp.
239–263, 1996.

[5] C. Heitmeyer, C. Landwehr, and M. Cornwell, “The use of quick
prototypes in the secure military message systems project,” in
Proceedings of the Workshop on Rapid Prototyping. New York,
NY, USA: ACM Press, 1982, pp. 85–87.

[6] C. E. Landwehr, C. L. Heitmeyer, and J. McLean, “A security
model for military message systems,” ACM Transactions on Com-
puter Systems (TOCS), vol. 2, no. 3, pp. 198–222, 1984.

[7] R. W. Shirey, “The defense message system,” ACM SIGCOMM
Computer Communication Review, vol. 20, no. 5, pp. 48–55, 1990.

[8] S. Čapkun, L. Buttyán, and J.-P. Hubaux, “Small worlds in security
systems: an analysis of the pgp certificate graph,” in Proceedings
of the New Security Paradigms Workshop (NSPW). New York,
NY, USA: ACM Press, 2002, pp. 28–35.

[9] P. R. Zimmermann, The Official PGP User’s Guide. MIT Press,
1995.

[10] K. P. Bosworth and N. Tedeschi, “Public key infrastructures - the
next generation,” BT Technology Journal, vol. 19, no. 3, pp. 44–59,
2001.

[11] S. Chokhani, W. Ford, R. Sabett, C. Merrill, and S. Wu, “Internet
x.509 public key infrastructure certificate policy and certification
practices framework,” Network Working Group, , United States,
Tech. Rep., 2003, rFC3647.

[12] M. R. Thompson, A. Essiari, and S. Mudumbai, “Certificate-based
authorization policy in a pki environment,” ACM Transactions on
Information and System Security (TISSEC), vol. 6, no. 4, pp. 566–
588, 2003.

[13] I. Brown and C. R. Snow, “A proxy approach to e-mail security,”
Software—Practice & Experience, vol. 29, no. 12, pp. 1049–1060,
1999.

[14] M. Ferris, “New email security infrastructure,” in Proceedings of
the New Security Paradigms Workshop (NSPW). Los Alamitos,
CA, USA: IEEE Computer Society Press, 1994, pp. 20–27.

[15] I. Fette, N. Sadeh, and A. Tomasic, “Learning to detect phishing
emails,” in Proceedings of the 16th international Conference on
World Wide Web. New York, NY, USA: ACM Press, 2007, pp.
649–656.

[16] S. L. Garfinkel, D. Margrave, J. I. Schiller, E. Nordlander, and
R. C. Miller, “How to make secure email easier to use,” in
Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. New York, NY, USA: ACM Press, 2005,
pp. 701–710.

[17] S. T. Kent, “Internet privacy enhanced mail,” Communications of
the ACM, vol. 36, no. 8, pp. 48–60, 1993.

[18] A. Levi and Çetin Kaya Koç, “Inside risks: Risks in email
security,” Communications of the ACM, vol. 44, no. 8, p. 112,
2001.

[19] J. Epstein, “Architecture and concepts of the argue guard,” in
Proceedings of the 15th Annual Computer Security Applications
Conference (ACSAC). Washington, DC, USA: IEEE Computer
Society, 1999, p. 45.

[20] E. Monteith, “Genoa tie, advanced boundary controller experi-
ment,” in the 17th Annual Computer Security Applications Confer-
ence (ACSAC). Washington, DC, USA: IEEE Computer Society,
2001, p. 74.

[21] ISSE Guard, the Air Force, October 2004,
http://www.if.afrl.af.mil/tech/programs/isse/.

[22] Information Support Server Environment (ISSE) Guard, GlobalSe-
curity.org, 2006, http://www.globalsecurity.org/intell/systems/isse-
guard.htm.

[23] Cross-domain solutions, Galois, 2006,
http://www.galois.com/xdomain.php.

[24] NetSec: Managed Security. Business Relevance, NetSec, 2007,
http://www.netsec.net/content/index.jsp.

[25] US Message Text Format, Electronic Documentation System,
DISA/JIEO, 1998, mIL-STD-6040.

[26] S. G. Akl and P. D. Taylor, “Cryptographic solution to a problem
of access control in a hierarchy,” ACM Transactions on Computer
Systems (TOCS), vol. 1, no. 3, pp. 239–248, 1983.

[27] R. L. Rivest, A. Shamir, and L. M. Adleman, “A method for
obtaining digital signatures and publickey cryptosystems,” Com-
munications of the ACM, vol. 21, no. 2, pp. 120–126, 1978.

[28] R. S. Sandhu, “Cryptographic implementation of a tree hierarchy
for access control,” Information Processing Letters, vol. 27, no. 2,
pp. 95–98, 1988.

[29] J. Rompel, “One-way functions are necessary and sufficient for
secure signatures,” in Proceedings of the Twenty-Second Annual

74 JOURNAL OF SOFTWARE, VOL. 2, NO. 6, DECEMBER 2007

© 2007 ACADEMY PUBLISHER



ACM Symposium on Theory of Computing. New York, NY, USA:
ACM Press, 1990, pp. 387–394.

[30] Y. Zheng, T. Hardjono, and J. Seberry, “New solutions to the
problem of access control in a hierarchy,” Department of Computer
Science, University of Wollongong, Tech. Rep., 1993, technical
Report Preprint 93-2.

[31] J. S. Park, “Towards secure collaboration on the semantic Web,”
ACM Computers and Society, vol. 32, no. 6, June 2003.

[32] J. S. Park and R. Sandhu, “Binding identities and attributes using
digitally signed certificates,” in Proceedings of the 16th Annual
Conference on Computer Security Application (ACSAC), New
Orleans, Louisiana, December 11-15, 2000.

[33] XML-Signature Syntax and Processing, W3C, February 2002,
http://www.w3.org/TR/xmldsig-core/.

[34] ITU-T Recommendation X.509, March 2000, iSO/IEC 9594-
8:2001.

[35] M. Myers, C. Adams, D. Solo, and D. Kemp, “Internet X.509
certificate request message format,” Network Working Group,
United States, Tech. Rep., 1999, rFC2511.

[36] Extensible Markup Language (XML), W3C, 2007,
http://www.w3.org/XML/.

[37] J. S. Park and G. Devarajan, “Fine-grained and scalable approaches
for message integrity,” in Proceedings of the 40th Hawaii Inter-
national Conference on Systems Sciences (HICSS-40), Big Island,
HI, January 3-6, 2007.

[38] T. Edgington, B. Choi, K. Henson, T. Raghu, and A. Vinze,
“Adopting ontology to facilitate knowledge sharing,” Communi-
cations of the ACM, vol. 47, no. 11, pp. 85–90, 2004.

[39] S. Kaushik, D. Wijesekera, and P. Ammann, “Policy-based dissem-
ination of partial Web-ontologies,” in Proceedings of the Workshop
on Secure Web Services. New York, NY, USA: ACM Press, 2005,
pp. 43–52.

[40] V. Raskin, C. F. Hempelmann, K. E. Triezenberg, and S. Niren-
burg, “Ontology in information security: a useful theoretical
foundation and methodological tool,” in Proceedings of the New
Security Paradigms Workshop (NSPW). New York, NY, USA:
ACM Press, 2001, pp. 53–59.

Joon S. Park is an assistant professor and
the director of the Laboratory for Applied
Information Security Technology (LAIST) at
the School of Information Studies (iSchool)
at Syracuse University, Syracuse, New York.
Before he joined the iSchool in 2002, he did
research in information security at the U.S.
Naval Research Laboratory (NRL)’s Center for
High Assurance Computer Systems (CHACS).
He completed his doctorate at George Mason
University, Fairfax, Virginia, in 1999.

Ganesh Devarajan is a security researcher
at TippingPoint’s Digital Vaccine group. Cur-
rently he focuses on SCADA security research
and other application-based security services.
He was a research member at the Laboratory
for Applied Information Security Technology
(LAIST) at Syracuse University in New York.
He was involved in research activities for
XML security and digital signature schemes.
He holds a masters degree in computer science
from Syracuse University.

JOURNAL OF SOFTWARE, VOL. 2, NO. 6, DECEMBER 2007 75

© 2007 ACADEMY PUBLISHER




