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Abstract:	 In the study of cadre profiling issue, the selection of label attributes poses the most significant 
challenge. In this paper, Rough Set is utilized to model the cadre profiling issue. Label selection issue, which 
stands for the difficulty of cadre profiling, is transformed into an attribute reduction issue within the Rough 
Set framework. The paper presents a Genetic Algorithm, which integrates adaptive crossover and mutation 
probability, best individual mutation and random mutation to address the attribute reduction issue. 
Comparative analysis demonstrates that the proposed algorithm exhibits good classification accuracy, 
attribute reduction rate and overall performance. Finally, the application effect of the proposed cadre 
profiling method is illustrated through an example of cadre selection and appointment. 
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1. Introduction	

In recent years, cadre and talent profiling have been significant issues in human resources management. 

Numerous scholars have profiled cadres or talents using various methods, such as statistical analysis, 
recommendation systems, and artificial intelligence, solving practical problems such as recruitment, 

appointment, education, and retention. In the study of cadre profiling issues, the selection of label attributes 
poses the most significant challenge. Currently, most studies utilize expert prediction or empirical pattern 

recognition methods [1, 2], while others employ cluster analysis methods [3] and multi-modal subspace 
learning methods [4]. However, these approaches may suffer from drawbacks such as excessive reliance on 

expert experience, lack of objectivity, or excessive computational intensity for application to large datasets.  
Rough Set is an artificial intelligence algorithm that analyzes data and infers implied knowledge 

therefrom. Attribute reduction is a crucial application area within Rough Set theory. It can identify essential 

attribute subsets from the set of all conditional attributes in the knowledge system, making the 
classification relative to the decision attributes derived from the attribute subset consistent with the 

classification derived from all conditional attributes, thereby reducing the number of conditional attributes. 
In this study, we attempt to utilize Rough Set to model the cadre profiling issue, transform the label 

attribute selection issue into an attribute reduction issue, propose an attribute reduction algorithm based 
on an adaptive two-stage mutation genetic algorithm, and then illustrate the application of the algorithm 
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through the cadre selection and appointment scenario of a large group enterprise.  

2. Basic	Concepts	and	Modelling	of	Cadre	Profiling	

2.1. Basic	Concept	of	Rough	Set	

The Rough Set theory characterizes the objective world using a knowledge system, defined as: 

S	=	(U,	A,	V,	f)                                          (1) 

In Eq. (1), U is a non-empty object set called a domain. A refers to an attribute set of the research object in 

U,	A	=	C∪D, where C refers to a non-empty set composed of conditional attributes, D refers to a non-empty 
set comprising decision attributes, C∪D	≠	Φ. V is the range, V	= ∪ Va, where Va is the range of attribute a. f is 

the U	×	A	→	V mapping, which assigns an informative value to each attribute of each research object. 
In the knowledge system S, for each attribute subset P⊆A, the indiscernible relationship IND(P) is defined 

as: 

𝐼𝑁𝐷 𝑃 𝑥, 𝑦
𝑥, 𝑦 ∈ 𝑈 ,

∀𝑝 ∈ 𝑃,  𝑓 , 𝑓 ,
                          (2) 

The indiscernible relationship is also known as equivalent relationship. 
For any object subset X⊆U on domain U, the lower approximate set of X concerning attribute subset P is: 

𝑃 𝑋 𝑥 ∈ 𝑈, 𝑥 ⊆ 𝑋                                 (3) 

where 𝑥  is the equivalent class on the conditional attribute set P for object x. 
In the knowledge system S, if P is a subset of conditional attributes and P⊆C, then the positive range of P 

for the decision attribute set D is:  

𝑃𝑂𝑆 𝐷 ∪ 𝑃 𝑋 : 𝑋 ∈ 𝐼𝑁𝐷 𝐷                              (4) 

The dependency of decision attribute set D on the conditional attribute subset P, or the support of P on D 
is defined as: 

𝛾 D                                   (5) 

In Eq. (5), 𝑐𝑎𝑟𝑑 𝑃𝑂𝑆 𝐷  is the number of elements in the positive range of P for D and 𝑐𝑎𝑟𝑑 𝑈  is the 

number of elements in the domain, where 0 𝛾 D 1, the larger the value of 𝛾 D , the stronger the 
dependency of D on P. 

Given a decision attribute set D, the reduction R for the conditional attribute set C can be defined as: 

𝛾 D 𝛾 D  AND 𝛾 D 𝛾 D , ∀𝑎 ∈ 𝑅                (6) 

For the given D, there is usually more than one reduction for the conditional attribute set C, and the 

intersection of all reductions is called the kernel of C and denoted Core(C). 

2.2. Modeling	of	Cadre	Profiling	Issue	

The cadre profiling issue aims to identify label attributes that play a decisive role in decision-making in 
specific application scenarios from extensive cadre data and utilize these label attributes to characterize 

cadres. If Rough Set is employed to model the cadre profiling issue, then the issue of selecting label 
attributes can be addressed using attribute reduction algorithms.  

Set the cadre profile knowledge system as S	=	 (U,	A,	V,	 f). The domain U	=	 {x1,	x2,	…,	xn} represents the 
collection of all cadres; any element xi	(1≤i≤	n) in U is a sample corresponding to a cadre object. C	=	{c1,	c2,	…,	
cm} represents the conditional attribute set, including gender, age, political affiliation, first education, 
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highest education, professional title, rank and so on. D	=	{d1,	d2,	…,	dk} represents the decision attribute set 
and can be set according to the specific application scenario. Attribute reduction is carried out on the 

knowledge system S. The resulting reduced set R is the label attribute set of the cadre profile.  

3. Attribute	Reduction	Algorithm	Based	on	an	Adaptive	Two‐Stage	Mutation	Genetic	
Algorithm	

The traditional attribute reduction algorithm is mainly based on the FARNeMF algorithm [5–7], a forward 
greedy algorithm based on attribute importance proposed by Hu et	al. However, these algorithms face two 

main challenges. One is that the computing process of the positive range cannot be carried out in parallel, 
leading to low algorithm performance. The other is that it is susceptible to local optimal solution. In recent 

years, some scholars have attempted to address the attribute reduction issues using heuristics such as 
Genetic Algorithms and Particle Swarm Algorithms [8–13], and made substantial progress in terms of 

classification accuracy, number of attribute reductions, and algorithm performance. 
A two-stage mutation strategy—the combination of the mutation of best individuals and random 

mutation—is utilized in the Genetic Algorithm based on adaptive crossover probability and mutation 
probability, to address the attribute reduction issue. The algorithm is as follows: 

3.1. Computing	the	Kernel	

The kernel is the intersection of all reductions of a Rough Set, so the result of any attribute reduction 
algorithm must be a superset of the kernel. In this paper, at the start of the algorithm, the kernel Core(C) of 

the Rough Set is calculated with the simplified difference function proposed by Zhou	 et	 al.	 [8]. In 
subsequent stages of population initialization, crossover, and mutation, each resulting new individual must 

contain all attributes in Core(C), so as to narrow the search space and improve algorithm efficiency. 

3.2. Coding	Scheme	

Binary encoding is utilized to encode individuals. Each individual of the Genetic Algorithm corresponds 

to a subset of the conditional attribute set C, i.e., a possible reduction. Each gene position of an individual 
corresponds to a conditional attribute one-to-one. If an attribute is included in the subset of conditional 

attributes, the value of the gene position corresponding to that attribute is 1. Otherwise, it is 0. For instance, 
if the conditional attribute set of a knowledge system is C	=	{c1,	c2,	…,	c10}, then the number of genes of each 

individual in the genetic algorithm population is 10. If a conditional attribute subset is {c1,	c2,	c7,	c10}, the 
individual corresponding to this subset can be encoded 1100001001. 

3.3. Fitness	Function	

Attribute reduction needs to consider two goals, that is, classification effect and reduction effect.  The 
support degree 𝛾 D  of a conditional attribute subset B	 (B⊆C) for the decision attribute set D is a 

measure of classification effect, with larger values of 𝛾 D  indicating better classification effect. The 
reduction effect is measured by the number of attributes in B. The smaller the number of attributes, the 

more pronounced the reduction effect. Therefore, the fitness function of the attribute reduction issue can be 
set as: 

𝐹𝑖𝑡 𝑎 𝛾 D 𝑏                                (7) 

where card(C) represents the number of attributes in the conditional attribute set C and card(B) denotes 

the number of attributes in the subset B. a and b are the adjustment coefficients, with a larger value of a 
indicating more weight of the classification effect in the fitness function. This helps retain more knowledge 

information in the knowledge system, thereby aligning better with the Rough Set reduction criteria. Here, 
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we define a = 0.8, b = 0.2.  
The 𝛾 D  part of the fitness function, involving computation of the positive range, is time-consuming. 

To improve the efficiency of algorithm, the fitness function is calculated solely for newly generated 
individuals in each generation during genetic algorithm execution. Moreover, for the newly developed 
individuals, multi-threading parallel computation of fitness values is employed for each individual. 

3.4. Population	Initialization	

The population size has a dramatic impact on the performance and efficiency of Genetic Algorithms. 

When the size is too small, it results in poor gene diversity and challenges in achieving satisfactory results. 
Conversely, a too large size will increase operations and reduce efficiency. An and Liu [9] identified a more 

appropriate population size of 50 for solving attribute reduction issues using the Genetic Algorithm based 
on experiments and observations of 15 datasets with varying sample sizes and attribute numbers from the 

UCI database. 
In this paper, we set the population size as 50 based on the Rough Set’s kernel Core(C) and randomly 

generated 50 individuals as the initial population. The steps for population initialization are as follows: 

(1) Set the value of the gene position corresponding to all attributes in Core(C) to 1; 
(2) For attributes not in Core(C), randomly set to 0 or 1; 

(3) Repeated steps (1) and (2) until all individuals reaching the population size are generated; 
(4) Calculate the fitness function for all individuals. 

3.5. Selection	

The selection process aims to choose individuals with higher fitness from the previous population to be 
inherited to the next generation, reflecting the idea of “survival of the fittest”. The algorithm utilizes a 

standard roulette selection operator to provide individuals with high fitness a greater chance of advancing 

to the next generation. For the individual i, the probability 𝑃  of being selected is:  

𝑃
∑

                                          (8) 

In Eq. (8), 𝐹𝑖𝑡  denotes the fitness value of the individual i, while n represents the population size. 

The selection process is: 

(1) Traverse all individuals in the population, calculate the selection probability P for each individual and 
the cumulative selection probability 𝑃𝑎𝑐𝑐 of all individuals before the current one, and construct the 

layout of the roulette wheel. For the individual i: 

𝑃𝑎𝑐𝑐 ∑ 𝑃                                       (9) 

(2) Generate a random number r between 0 and 1 as a pointer on the roulette wheel;  
(3) If 𝑃𝑎𝑐𝑐 𝑟 𝑃𝑎𝑐𝑐 , select the individual i; 

(4) Repeat steps (2) to (4) until individuals reaching the population size were selected. 

3.6. Crossover	

The crossover operator generates new individuals in the genetic algorithm to realize the algorithm’s 
global search ability. The standard Genetic Algorithm empirically utilizes a fixed crossover probability set 
during iterations and has certain blindness. From the overall evolution process of the population, the 

crossover probability should gradually decrease with the evolution process and eventually stabilize at a 
certain value to avoid disrupting the stability of the population in the late stage of the algorithm, making it 

hard for the algorithm to converge. Therefore, this algorithm employs an adaptive crossover probability: 
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𝑃 𝛽                                      (10) 

In Eq. (10), G represents the number of generation and α,	β,	γ is the constant coefficient. Considering that 
the crossover probability typically falls between 0.6 and 0.9, here we define α = 0.05, β = 0.6 and γ = 0.6. The 
image of the crossover probability function is shown in Fig. 1.  

 
Fig. 1. Image of the crossover probability function. 

Once the crossover probability PC is determined, all individuals generated in the selection stage are 
traversed. Under the control of the crossover probability, individuals for crossover operation are identified. 

Subsequently, these selected individuals are grouped into pairs as parents, and the crossover operation is 
carried out. 

Following the idea of “survival of the fittest”, individuals with higher fitness should contribute more genes 

to the offspring. Therefore, Eq. (11) is utilized to calculate the position of the crossover point:  

𝑃𝑜𝑠                                    (11) 

where p1 and p2 are the parents for crossover operation and 𝐹𝑖𝑡 , 𝐹𝑖𝑡  represent the respective 

fitness values of the parents.  
After 𝑃𝑜𝑠  is rounded to the nearest integer, the position of the crossover point is obtained. The swap 

of all genes of two individuals p1 and p2 after the crossover point generates two offspring individuals. After 

that, p1 and p2 are replaced. Let p1 = 1100001001, p2 = 1101010101, and 𝑃𝑜𝑠  is rounded to 5. The 
crossover between p1 and p2 is shown in Fig. 2. 

 
Fig. 2. Schematic diagram of cross operation. 

 

3.7. Elite	Retention	Strategy	

The elite retention strategy improves the performance and execution effect of the algorithm by 

preserving excellent individuals, so that the offspring can inherit excellent genetic information in the 
evolution process. After executing selection and crossover operations, the algorithm checks whether the 
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best individual from the previous generation is in the current population. If not, it replaces the worst 
individual in the current population with the best individual from the previous generation. 

3.8. Two‐Stage	Mutation	

Mutation provides diversity for the population’s genes, enabling the genetic algorithms to “jump out” of 
local optimal solution, avoid premature convergence, and approach the global optimum. In the early stage of 

the algorithm, the population exhibits abundant diversity. In this case, the mutation probability should be 
lower to enhance the algorithm’s operation speed. As evolution proceeds, individuals converge towards 

those with high fitness, resulting in a decrease in population diversity. In this case, the mutation probability 
should be larger, to maintain diversity. In this paper, Eq. (12) is utilized to calculate the mutation 

probability:  

𝑃  𝑐                                  (12) 

where G is the generation number, and a,	 b,	 c are constant coefficients. Considering that the mutation 
probability typically does not exceed 0.1, this algorithm sets a = 0.05, b = 0.2, and c = −0.1. The image of the 

mutation probability function is shown in Fig. 3. 

 

Fig. 3. Image of the mutation probability function.	

This algorithm adopts a two-stage mutation strategy that combines mutation of the best individual and 
random mutation: under the control of mutation probability, the best individual is first mutated. If the 

mutation results in a higher individual fitness value, the worst individual in the current population is 
replaced with the new individual. If the mutation of the best individual fails, an individual is randomly 

selected to perform random mutation.  
The mutation of the best individual adopts a single-point mutation strategy: traverse from the first gene 

position of the best individual and skip if the current gene position is in Core(C). If not in Core(C), the fitness 
value is calculated by inverting the value of this gene position. If it is greater than the fitness value before 

mutation, then the mutation is successful, and the worst individual in the population is replaced with the 
new individual generated in the mutation. Otherwise, the value of this gene position is restored, and the 
same operation is executed for the next gene position until the mutation is successful or all gene positions 

are traversed. 
The process of random mutation is as follows: randomly select an individual from the population other 

than the best individual; randomly select several gene positions from the selected individual that are not in 
Core(C). Invert the values of these gene positions, and if the fitness value of the resulting new individual is 

greater than the fitness value of the worst individual in the current population, the mutation is successful, 
and the worst individual is replaced with the new individual; otherwise, the selected individual is restored 

and another individual is re-selected for random mutation, until the mutation is successful or the number of 
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failed mutations reaches 5. 
The mutation of the best individual is the fine-tuning of the best individual, which accelerates the 

“evolution” of the computational results towards a local optimal solution before reaching the local optimal 
solution. After reaching the local optimal solution, due to the small “magnitude” of mutation, it is difficult 
for the mutation of the best individual to produce better individuals. In this case, the introduction of 

random mutation can effectively guide the algorithm to “jump out” of the local optimal solution and “evolve” 
to the global optimal solution.  

3.9. Algorithm	Termination	Criteria	

The algorithm terminates when the fitness value of the best individual has not been optimized for 10 

consecutive generations. 
The algorithm flow is shown in Fig. 4. 

 

Fig. 4. Schematic diagram of algorithm flow. 

4. Experiment	and	Application	

4.1. UCI	Dataset	Comparison	Experiment	

From the UCI database, we selected three datasets with similar sample sizes and increasing numbers of 

attributes (from small to large). We compared them using the Partheno-genetic Algorithm in Attributes 
Reduction (PGAAR, proposed by Huang and Xiao [10]) and the Rough Set Attribute Reduction Algorithm 

based on Chaotic Discrete Particle Swarm Optimization (CBPSORS, proposed by Luan et	al.	[11]) in terms of 
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classification accuracy, attribute reduction rate, and run time. The basic information of three datasets is 
shown in Table 1. 

Table 1. Information of the Experimental Datasets 	

Dataset	 Number	of	Samples	 Number	of	Conditional	Attributes	
Glass 214 9 
Soybean (large) 307 35 
Audiology 226 69 

 

The experimental environment for the comparative analysis was a personal computer with an Intel Core 
i7 2.11 GHz CPU, 16 GB RAM, and Windows 10 operating system. In the experiment, we implemented three 
algorithms in Java and ran each algorithm 10 times to obtain the average for comparison. For PGAAR, the 

parameters described by Huang and Xiao [10] were used, while for CBPSORS, the parameters described by 
Luan	et	al.	[11] were used. 

4.4.1.	Classification	accuracy	
Classification accuracy is defined in Eq. (13): 

	 	 	                   𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦
    

   
100%	 	 	 	 	 	            (13) 

The average classification accuracy of the three algorithms is shown in Fig. 5. 

 

Fig. 5. Comparison of average classification accuracy among three algorithms.	

From Fig. 5, when the number of conditional attributes is small, the three algorithms exhibit similar 
classification accuracy. When the number of conditional attributes is large, the proposed algorithm shows 

higher accuracy. 
4.1.2.	Attribute	reduction	rate	

The attribute reduction rate is defined in Eq. (14): 

	                                        𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 100%          	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (14) 

As the percentage of the reduced attributes in all conditional attributes. The average attribute reduction 
rates for the three algorithms are shown in Fig. 6. 
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Fig. 6. Comparison of average attribute reduction rates among three algorithms.	

As shown in Fig. 6, the proposed algorithm has a higher attribute reduction rate than those of the PGAAR 

and CBPSORS algorithms, especially when the number of conditional attributes is large. 
4.1.3.	Run	time	

 

Fig. 7. Comparison of mean run time in ms among the three algorithms. 

As shown in Fig. 7, CBPSORS and the proposed algorithm outperform PGAAR, and the proposed 
algorithm has comparable run times to CBPSORS. 

To sum up, the proposed algorithm demonstrates comparable run time performance to CBPSORS. It has 

significantly better classification accuracy and attribute reduction rate than the other two algorithms, 
especially when the number of attributes is large. 

4.2. Practical	Application	in	Cadre	Selection	and	Appointment	Scenarios	

Cadre selection and appointment are crucial application areas of cadre profiling. In a large-scale 

enterprise with nearly 200,000 employees, more than 30,000 management talents and more than 6,000 
middle-level and above cadres, data from Internal Recruitment Platforms (IRP), Human Resource 
Management System (HRM), and Cadre Evaluation System (CES) are utilized as the raw data for cadre 

selection and appointment. The IRP contains 23,125 competition records and employment outcome of 
middle-level and above cadres from 2015 to 2023. At present, there are more than 4 million entries in the 

HRM system, from which information on cadre’s basic information, education and work experience, party 
and government positions, professional titles, awards and punishments, among others, are extracted. The 

CES contains more than 95,000 records of cadre evaluation results over the years. In this paper, we 
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extracted the evaluation results of leading cadres over the years. Since the Rough Set was not suitable for 
processing continuous data, we used the equal-frequency method to discretize continuous attributes such 

as age, height and weight. After preprocessing the original data using extraction, transformation, and 
loading tools, 66 conditional attributes were obtained, with the employment outcome (hired or not hired) 
as the decision attribute. The conditional attributes are listed in Table 2. 

Table 2. List of Conditional Attributes 

No.	 Attribute	 Origin	
1 Gender HRM 
2 Age HRM 
3 Ethnic group HRM 
4 Native place HRM 
5 Place of birth HRM 
6 Registered residence HRM 
7 Place of file HRM 
8 Current residence HRM 
9 Length of service HRM 

10 Length of employment in the company HRM 
11 Political status HRM 
12 Length of party membership HRM 
13 Health status HRM 
14 Marital status HRM 
15 Professional title HRM 
16 Date of attainment of current professional title (months) HRM 
17 Current rank HRM 
18 Length of time in current rank (months) HRM 
19 Mode of appointment HRM 
20 Level of skill qualification HRM 
21 Personnel classification HRM 
22 Computer proficiency HRM 
23 English proficiency HRM 
24 First education HRM 
25 Field of specialization for the first education HRM 
26 Type of institution for the first education HRM 
27 Degree of the first education HRM 
28 Highest education HRM 
29 Field of specialization for the highest education HRM 
30 Type of institution for the highest education HRM 
31 Degree of the highest education HRM 
32 Length of time working at the grassroots unit (months) HRM 
33 Length of time working at the government agency (months) HRM 
34 Number of national-level honorary titles in the past 3 years HRM 
35 Number of provincial and ministerial-level honorary titles in the past 3 years HRM 
36 Number of group-level honorary titles in the past 3 years HRM 
37 Number of national-level awards in the past 3 years HRM 
38 Number of provincial and ministerial-level awards in the past 3 years HRM 
39 Number of group-level awards in the past3 years HRM 
40 Number of unit rewards received in the past 3 years HRM 
41 Number of disciplinary actions received from the enterprises in the past 3 years HRM 
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42 Number of disciplinary actions received within the party in the past 3 years HRM 
43 Number of publications in the past 3 years HRM 
44 Number of patents obtained in the past 3 years HRM 
45 Number of national projects undertaken in the past 3 years HRM 
46 Number of group-level projects undertaken in the past 3 years HRM 
47 Number of company-level projects undertaken in the past 3 years HRM 
48 Average score of comprehensive assessment in the past 3 years CES 
49 Average score of performance appraisal in the past 3 years CES 
50 Average score of party building assessment in the 3 years CES 
51 Average score of multidimensional evaluation in the past 3 years CES 
52 Average score of loyalty to the party in the 3 years CES 
53 Average score for boldness in innovation in the past 3 years CES 
54 Average score for ruling the enterprise effectively in the past 3 years CES 
55 Average score for promoting the enterprise successfully in the past 3 years CES 
56 Average score for integrity and honesty in the 3 years CES 
57 Height IRP 
58 Weight IRP 
59 Current income IRP 
60 Expected income IRP 
61 Whether there are relatives working within the group IRP 
62 Whether there are relatives overseas IRP 
63 Whether there is external funding from foreign countries IRP 
64 Whether there is a non-competition agreement IRP 
65 Whether there are labor disputes with other employers IRP 
66 Position applied for IRP 

 

Using historical data of 20,376 middle-level and above cadre selection and appointment records from 
2015 to 2022 as the training set, we performed attribute reduction using the proposed algorithm and 

obtained 18 label attributes: age, gender, political status, first education, highest education, type of 
institution for the first education, professional title, current rank, length of time in current rank, personnel 
classification, length of time working at the grassroots unit, length of time working at the government 

agency, number of provincial and ministerial-level honorary titles in the past 3 years, number of group-level 
honorary titles in the past 3 years, average score of comprehensive assessment in the past 3 years and 

position applied for.  
A Rough Set model was constructed to classify the test set using 2,749 competition records of 

middle-level and above cadres in 2023 as the test set, the above 18 label attributes as the conditional 
attribute set, and the employment outcome as the decision attribute. The classification result indicates that 

there were 475 individuals classified as “employed”. And in reality, 468 individuals were actually employed. 
There were 397 individuals that were both classified as “employed” and actually employed. The 

classification accuracy was 84.8%. 

5. Conclusion	

Cadre profiling is currently a vital research topic in enterprise management. In this paper, Rough Set 
theory is innovatively adopted to model the cadre profiling issue, and transform the label attribute selection 

issue into an attribute reduction issue. A two-stage mutation Genetic Algorithm based on adaptive 
crossover probability and adaptive mutation probability is proposed to address the attribute reduction 

issue. Through a comparative analysis with PGAAR and CBPSORS algorithms, the proposed algorithm can 
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achieve better classification accuracy and attribute reduction rate than PGAAR and CBPSORS algorithms 
within a run time comparable to CBPSORS. Finally, the application effect of the proposed cadre profiling 

method is illustrated through the cadre selection and appointment scenario of a large group enterprise. 
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