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Abstract: This paper introduces the domain of software process improvement (SPI) by including a review 

of it as an approach that can improve software quality. In addition, it reviews work that has been carried out 

in the SPI area, as well as problems that can limit how successful SPI initiatives are in various highlighted 

companies.  
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1. Introduction 

Software quality has been given considerable attention in the key areas of industry and academia due to 

its important role in modern-day living and business. The software quality assurance group has embraced a 

model that consists of a total of 14 quality factors in 3 stages of the development life cycle, namely, 

performance, design, and adaptation [1]. Even though creating software that adheres to every one of these 

various factors is difficult, this model provides an excellent frame of reference to comprehend software 

quality.  

A number of software engineering researchers are now paying close attention to the software 

development process because of the recent rise in the overall importance of software products and the 

current demand for better software quality within the industry. Continual assessments and constant 

improvements are required during this process to satisfy the customers’ requirements, as well as those of 

the stakeholders. These various improvements will lead to high-quality software being created by 

companies. The quality of the software processes that are utilized by companies significantly influences the 

software product’s overall quality [2]. Thus, one of the major challenges for software organizations is to 

acquire software that is of high-enough quality to meet their customers’ requirements [3][4]. 

Many researchers applied the software process improvement (SPI) concept to focus on software quality 

[5] [6]. Ashrafi [5], for example, investigated the kind of impact that SPI methodologies had on software 

quality. García-Mireles et al. [6] stated that when software development companies implement SPI, they try 

to improve software quality. SPI is seen as a vital aspect of the optimization of the software development 

process, particularly for small- and medium-sized organizations [7]-[10]. Niazi et al. [11] stated that one of 

the software industry’s biggest challenges is the design of SPI implementation initiatives that will effectively 

help small- and medium-sized organizations. Research efforts have so far concentrated on the 

implementation of SPI standards/frameworks to increase software quality and increase productivity [12]- 
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[45]. Two examples of well-known and established SPI standards are Capability Maturity Model Integration 

(CMMI) and ISO/IEC 15504.  

 We will introduce SPI in this paper and review it as an approach that can improve software quality. We 

will also review the work undertaken in the SPI area and highlight the problems that can affect the success 

of SPI initiatives in various organizations. 

 We will organize our paper as follows: Section 2 will provide some background on SPI. Section 3 will 

identify the most widely accepted approaches to process improvement. Section 4 will highlight the current 

challenges to SPI. Section 5 will describe our conclusions and future work. 

2. Software Process Improvement 

Attempts have been made by software companies to improve software quality for a number of decades 

because of the questionable quality image of many of their products [13]. As a result, these companies have 

been stretched to a greater degree than ever before, and so the motto of many of them has become 

customer satisfaction [14]. Software quality is vital as software is becoming increasingly crucial to our daily 

lives [15], [16]. Most software organizations struggle to provide quality software on schedule and within 

budget [17]. Although different approaches have been developed to address these software quality issues 

effectively, SPI is the most widely used method [18]. 

It provides organizations with a powerfully effective way to assess their ability to develop software 

systems and, therefore, identify their own weaknesses and strengths. This puts them in a good position to 

start a process improvement program that includes clearly defined, achievable goals that can demonstrate 

their achievement. SPI’s underlying theme is that it can help organizations to define and understand their 

current software development processes, which enables them to determine the various areas that need to 

be controlled and manipulated to achieve a specific product effect [19].  

SPI has been defined by Fox [20] as “a set of process oriented quality management systems that apply a 

unified set of theories, tools, methods and techniques in conjunction with attitudes, values and model 

problem solution.” Meanwhile, Rico’s [21] definition of SPI is “the discipline of characterizing, defining, 

measuring, and improving software management and engineering processes, leading to successful software 

engineering management, higher product quality, greater product innovation, faster cycle times, and lower 

development costs, simultaneously.” In addition, Sommerville [22] has stated that “SPI involves 

understanding existing processes and changing these processes to improve product quality and/or reduce 

costs and development time.” Sommerville added that “process improvement does not simply mean 

adopting particular methods or tools or using some model of a process which has been used elsewhere. 

Process improvement should always be seen as an activity that is specific to an organization or a part of a 

larger organization” [21]. In Rico’s [21] and Sommerville’s definitions [21], the focus is on heightening the 

quality of the software while also decreasing the time it takes to develop the product and the cost. These 

seem to be more complete definitions, and therefore, it is more appropriate to use them in this research 

project.  

3. Approaches to Software Process Improvement 

3.1.  Capability Maturity Model 

Founded in 1984, the Software Engineering Institute (SEI) is funded by the US government and based at 

Carnegie-Mellon University, Pittsburgh. The purpose of this organization is to set up protocols and establish 

methodologies in the software development field.  

In 1986, it began the development of a process maturity framework. This was in response to the US 

Department of Defense’s request for a method that would enable them to assess the ability of contractors to 
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make software that was both on budget and on time. The Capability Maturity Model (CMM) was one of SEI’s 

early developments [23] that aimed to improve the software processes of organizations. CMM was largely 

started by Watts Humphrey, who wrote the first book on CMM [24]. SEI then started to refine their work 

with the assistance of Mark Paulk, as well as his team of researchers and engineers.  

CMM’s primary aim is to determine the capability of an organization by measuring the degree to which its 

processes are managed and defined. CMM evolved from an ad-hoc immature software process to one that is 

optimized, mature, and disciplined. It is structured into maturity levels that range from level 1 to level 5. 

Level 1 is Initial, level 2 is Repeatable, level 3 is Defined, level 4 is Managed, and level 5 is Optimizing (see 

Fig. 1). A maturity level is defined by Paulk et al. [23]) as “a well-defined evolutionary plateau towards 

achieving a mature software process.” Software process maturity is defined by them as being “the extent to 

which a specific process is explicitly defined, managed, measured, controlled and effective” [23]. A different 

state of maturity is expressed by each maturity level in an organization. Level 1 is the lowest maturity state, 

and level 5 is the highest. The five levels are made up of a number of key process areas (KPAs) (see Fig. 1), 

and several (generally three or four) goals are defined for each process area (PA). Many key practices are 

identified under one of five sections, which are called “common features.” These are attributes used to 

determine the repeatability and effectiveness of the institutionalization or implementation of a KPA. An 

organization has to satisfy the goals of the KPAs for that level and also the lower levels if it is to reach a 

certain maturity level. These key practices assist by enabling an organization to understand how it can 

achieve the maturity goals. They also serve as examples of the various activities that have to be addressed 

while improvements are being made to a software process.  

Organizations can carry out an “appraisal” to judge their process weaknesses, strengths, and maturity 

level. Self-assessments or evaluations prescribed via SEI are used to determine an organization’s capability. 

Two surveys have been developed by SEI—the Software Process Assessment (SPA) and Software Contractor 

Evaluation (SCE)—which rate and compare organizations against CMM. SCE is an appraisal or audit that is 

conducted by assessors who have been trained to identify contract software developers that are qualified. 

SPA, on the other hand, is an assessment that helps organizations to evaluate the maturity of their software 

process, as well as identify the key areas that need to improve. 

 

 
Fig. 1. Key process areas by maturity level. 

 

CMM generally covers planning, engineering, maintaining, and managing software processes. It is 

accepted as being the de-facto standard in big North American companies, and its popularity is now rapidly 
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growing throughout Europe. Indeed, CMM has become a valuable SPI model that has detailed definitions of 

important process areas and key practices, as well as defined levels. The model fails to show how those key 

practices can be to implemented, however, and does not suggest any efficient implementation strategies. 

Neither does it address any issues that relate to human resources, such as hiring, selecting, and motivating 

staff. 

CMM is questioned by many companies because of the lack of resources available to small companies for 

SPI, and it is thought to be more suitable for large organizations [25]. Some researchers have decided to 

tailor it to small projects [26] while others have applied CMM to a micro team with limited resources [27]. 

Hareton and Terence [26] have argued that CMM needs to be tailored to small projects, as this will 

encourage more companies to use it. They created a process framework for small projects that is based on 

CMM’s eight KPAs and obtained positive results regarding software quality. Batista and Dias [27] wrote 

about a case study in which CMM was applied to a micro team of fewer than 10 people that had limited 

resources. They focused mainly on the achievement of the KPA objectives of level 2. The results showed a 

clear improvement had occurred in the processes. This demonstrates that it is possible for SPI to be 

achieved by a small team that has limited resources.  

3.2. Capability Maturity Model Integration 

SEI’s latest model is CMMI for development version 1.3 [28]. The CMMI project was launched to solve the 

difficulty of using multiple CMMs. It combines three source models into one single improvement framework 

that accommodates multiple disciplines and can support two representations (continuous and staged) 

because of its flexibility. These three source models are the Capability Maturity Model for Software, 

Electronic Industries, the Alliance Interim Standard (EIA/IS) 731, and the Integrated Product Development 

Capability Maturity Model (IPD-CMM). 

SEI released CMMI version 1.3 in 2010. It was built using knowledge of the best systems and software 

development practices of high-maturity CMM organizations that had been practicing the model for a long 

time, along with information from a number of well-regarded and popular models. Figure 2 shows CMMI’s 

history. 

 

 
Fig. 2. History of CMMI [28]. 

 

CMMI’s core objective is to discover an organization’s capability by identifying the degree to which its 

processes are both managed and defined. CMMI has evolved from an immature software process to become 

a process that is disciplined, optimized, and mature. It is structured into five maturity levels, which are 

Initial, Defined, Managed, Quantitatively Managed, and Optimizing (see Fig. 3). 
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CMMI for development includes different PAs, which are categorized across five maturity levels that 

describe an organization’s various states of maturity. CMMI level 1 is the lowest state while level 5 is the 

highest. 

Each of the five levels consists of several PAs, and each has different goals (both generic and specific). 

Various practices are identified under each goal. The goals of the PAs for that level and all of the lower levels 

have to be satisfied if an organization is to qualify for a particular maturity level. These practices help an 

organization to determine how to achieve the maturity goals, and they serve as examples of the kind of 

activities that have to be addressed when an organization is carrying out an SPI program.  

 

 
Fig. 3. CMMI maturity levels. 

  

CMMI has continuous and staged representations. Fig. 4 shows a CMMI model that has a staged 

representation. In this staged representation, the maturity levels provide the company with a 

recommended order for approaching the improvement process in stages. It is the maturity levels that 

organize the PAs, as shown in Fig. 4. There are both specific and generic goals within the PAs, as well as 

specific and generic practices.  

 

 
Fig. 4. CMMI model with a staged representation. 

 

Fig. 5 shows a CMMI model that has a continuous representation. The specific goals organize the specific 

practices, and it is the generic goals that organize the generic practices. Each generic and specific practice 

corresponds to a different capability level.  
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Fig. 5. CMMI model with a continuous representation. 

 

CMMI is a valuable improvement framework that has defined levels, Pas, and key practices. However, 

similar to its predecessor, it does not show companies how they can implement key practices, nor does it 

recommend any implementation strategies that would be effective.  

3.3. SPICE (ISO/IEC 15504) 

SPICE is a set of international standards that has been designed for software process assessment [29]. It 

aims to harmonize a number of approaches to the assessment of the software process and also encourages 

self-assessment. The intention is to deliver some reliable evaluations of the capability of the process. These 

evaluations are not only repeatable but also provide the kind of results that enable organizations to make 

valid comparisons between a number of different assessments. SPICE provides a mechanism for the 

interchange of assessment results that are based on various process models. This is achieved by defining a 

reference model for the software processes, as well as process capability. SPICE consists of nine parts: 

• Part 1: The concepts and an introductory guide 

• Part 2: A reference model for the processes, as well as process capability. This part defines the set of 

processes and provides a framework for evaluating the processes’ capability. This is achieved by assessing 

the process attributes that are structured into capability levels. 

• Part 3: Performing an assessment 

• Part 4: A guide to performing these assessments 

• Part 5: The assessment model and indicator guidance 

• Part 6: A guide to the competency of the assessors 

• Part 7: A guide for use in the improvement process 

• Part 8: A guide for use in determining the capability of the supplier process  

• Part 9: Vocabulary 

The key section of SPICE is Part 2, where a set of universal software engineering processes are 

documented in the reference model to provide an organization with a common basis for the various 

software process assessment methods and models. This makes it possible to report the assessment results 

in a common context. 
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The process capability is expressed in terms of the process attributes that are grouped into capability 

levels, with each level representing an incremental evolution in the control and management of the 

processes. Table 1 shows both the capability levels and the associated process attributes. 

 

Table 1. SPICE Capability Levels and Process Attributes  

Capability 

Level 

Capability Description Process Attributes 

0 

 

Incomplete process – 

1 

 

Performed process Process performance 

2 

 

Managed process Performance management 

Work product management 

3 

 

Established process Process definition and tailoring 

Process resource 

4 

 

Predictable process Process measurement 

Process control 

5 

 

Optimizing process Process change 

Continuous improvement 

 
The process is evaluated by making an assessment of the selected processes’ capability attributes. The 

assessment output contains process profiles and a capability level rating (which is optional) for every 

process instance that is assessed. The process assessment is either carried out by a team that has at least 

one qualified assessor or is performed on a continuous basis by using tools verified by the qualified 

assessor and are suitable for data collection. SPICE successfully harmonizes a number of existing 

approaches to the improvement of the process, but it does not provide specific recommendations for 

improvement. Instead, it leaves it to the practicing company to determine what the specific improvement 

path will be. 

3.4. ISO 9000 

ISO 9000 is a series of quality system standards [30] that aim to create common standards for both 

quality assurance and quality management. As they are generic, these standards can be applied to 

organizations in the manufacturing and service industries, whatever their size is or how complex their 

product/service is.  

ISO 9001, “Quality Systems—The Standard Model for Quality Assurance in Design and Development, 

Installation, Production, and Servicing,” is applicable to both software maintenance and development [31]. 

This model is utilized when the supplier needs to give assurances that it will conform to specific 

requirements during the design, development, installation, production, and servicing stages. These are not 

product-specific requirements, and the main aim is to provide customer satisfaction by avoiding instances 

of nonconformity at any of the stages, from design right through to servicing. This is a prescriptive model 

that encourages companies to examine the internal quality management systems within their own 

organization. ISO 9000-3, “Quality Management and Quality Assurance Standards—Guidelines for the 

Application of ISO 9001 to the Development, Supply, and Maintenance of Software,” was published in 1991 

by the International Standards Organization [32]. ISO 9000-3 works by interpreting 9001 for software, 

while ISO 9001 2000 replaced the ISO 9001 1994 standard [30]. Furthermore, the old quality standards of 

ISO 9001 1994 and ISO 9003 1994 are now obsolete as they have all been discontinued. Although ISO 9001 

2000 has proved to be an effective standard for quality management, it has failed to address any of the SPI 
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implementation issues. 

3.5. Trillium 

Trillium is an assessment model that is based on SEI’s CMM and developed by Northern Telecom and Bell 

Northern Research in 1991 [33]. Its set of practices are derived from a benchmarking exercise, and it 

possesses eight capability areas that are able to span the five Trillium capability levels. Different practices 

have been designed under each of the capability levels. Although it was designed for embedded software 

systems, like telecommunications systems, Trillium can also be applied to other parts of the software 

industry, such as various management information systems. 

3.6.  Bootstrap 

Bootstrap a methodology for assessing and improving software process quality [34]. It is primarily used 

in Europe, and its main features include the underlying process model, assessment model, capability levels 

for evaluation, process improvement guidelines, and rating and scoring principles. 

4. Current Challenges of Software Process Improvement 

Many organizations in the software industry focus on gaining high maturity levels without making any 

improvements to their process capability, due to the level of competition that currently exists in the 

industry. Measuring organizational capability with maturity levels is difficult as the maturity framework 

fails to look deeply into every organizational practice [35]. There is, in addition, a need to adjust the 

appraisal methods and the CMMI framework [35].  

The standards and models used to improve the software development process have significantly 

advanced over the past decade. Research reveals that the efforts exerted to develop these standards and 

models help in the production of high-quality software. They can also increase productivity and reduce both 

time and costs [36]-[38]. Unfortunately, these advances have not been matched by any similar advances in 

the adoption of the standards and models [39], [41], [42]. This situation means that many SPI efforts have 

only had limited success. Research has shown that 67% of all SPI managers would like to receive guidance 

on “how” they could implement SPI activities effectively, rather than be given advice on which SPI activities 

they should implement [42]. Even though the SPI implementation process is important, there has been little 

empirical research conducted into developing ways that organizations can implement SPI programs 

effectively [35]. This condition suggests that SPI’s current problem is the lack of effective strategies that 

organizations can use to successfully implement the standards or models, rather than any lack of standards 

or models.  

Some SPI models, such as CMMI, are seen as being more suitable for large organizations with enough 

resources to invest, as smaller organizations have found it hard to tailor some of CMMI’s recommendations 

[41], [43], [44]. Leung stated that this adaptability issue can stop a few companies from embarking on SPI 

[39]. Hareton and Terence [43] have argued that CMM needs to be tailored to small projects to encourage 

more companies to use it. 

The success of SPI initiatives in different companies can be limited by other difficulties, such as the 

expense of SPI, the lack of resources, the lack of support, the lack of immediate success, and organizational 

politics [41], [44]. As a result, adopting SPI initiatives can be difficult for companies. Therefore, researchers 

constantly need to be aware of what is really undermining the SPI implementation process and 

organizations from successfully implementing SPI standards and models. 

A thorough literature review showed that one SPI topic was missing, that is, empirical studies only 

concentrate on “what” activities are needed instead of “how” companies can implement them. The current 

research has shown that just identifying “what” activities are needed to implement SPI is no longer 
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sufficient. If SPI programs are to be successfully implemented in the future, organizations need to know 

“how” they can do it [35], [42]. Therefore, attention to the “how” is vital. 

5. Conclusion 

SPI has been examined in this paper, and a number of approaches have been described. In addition, a 

thorough literature review has revealed what is missing in SPI. In other words, although many SPI models 

and standards exist, very little attention has actually been paid to their effective and successful 

implementation. Several advances have been achieved in the development of SPI models and standards, 

such as CMM, CMMI, and ISO SPICE. However, these standards and models have not been adopted 

sufficiently, which means that many SPI efforts have achieved only limited success. SPI’s current problem, 

therefore, is not a lack of standards or models, but instead the lack of an effective strategy to successfully 

implement the models or standards. The literature also reveals that many companies have adopted ad-hoc 

methods to implement SPI initiatives in real life, instead of any rigorous systematic methods. No approach 

has been identified so far that would specifically help organizations to design effective implementation 

initiatives for SPI.  

 The literature also highlights the fact that most existing research focuses on “what” activities can be 

used by organizations to implement SPI, instead of “how” the companies can implement these activities. SPI 

implementation is vital, and this importance demands that it should be recognized as a complicated process. 

Attention to “how” it can be implemented is crucial in the successful implementation of SPI, and 

organizations should use an organized set of activities to determine their own SPI implementation maturity. 

 Further research into SPI implementation is therefore needed to ensure a higher quality of SPI 

implementation, reduce the time and cost of this implementation, and, just as importantly, increase the 

satisfaction levels of SPI practitioners. 
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