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Abstract: Many researchers have studied abstract machines in order to give operational semantics to 

various kinds of programming languages. For example, Landin's SECD machine and Curien's Categorical 

Abstract Machine are proposed for functional programming languages and useful not only for theoretical 

studies but also implementation of practical language processors. We study simplification of SECD machine 

and design a new abstract machine, called Simple Abstract Machine. We achieve the simplification of SECD 

machine by abstracting substitutions for variables. In Simple Abstract Machine, we can formalize first-class 

continuations more simply and intelligibly than SECD machine. 
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1. Introduction 

Many researchers have proposed abstract machines in order to give operational semantics to various 

kinds of programming languages, such as Landin's SECD machine [1], [2] and Curien's Categorical Abstract 

machine [3], [4]. From the theoretical viewpoint, there are many kinds of researches of abstract machines. 

Graham formalized and verified implementation of SECD machine using the HOL prover [5]. Hardin et al. 

formulated abstract machines for functional languages in the framework of explicit substitutes [6]. Ohori 

studied abstract machines from the proof-theoretic approach [7]. Curien et al. investigated Curry-Howard 

isomorphism with respect to jump instructions in abstract machines [8]. 

We study simplification of SECD machine in order to clarify the continuation in the framework of abstract 

machine. The traditional abstract machines, such as SECD machine, consist of complicated internal 

configurations. SECD machine has four data sequences: Stack, Environment, Code, and Dump. It is not 

unclear which components correspond to the continuation. Simplifying SECD machine, we obtain a clear 

formalization of continuation in the framework of abstract machine. We call it the Simplified Abstract 

Machine (SAM). 

2. Simple Abstract Machine 

In this section, we define an abstract machine based on a call-by-value evaluation strategy, called, the 

Simple Abstract Machine (SAM). We can regard SAM as a simplified version of the SECD machine, which is 

explained in a later section. 

The three kinds of atomic symbols, primitive functions, numerals, and variables, are given in advance of 
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the definition of instructions and codes. Numerals represents integers such as 0,1,2,3,…,-1,-2,-3,... We 

represent numerals by n, n’, …, and variables by x, y, z,…, respectively. In this paper, we consider only the 

successor function on numerals, s, for simplicity's sake. 

Definition 1 (Instructions and Codes of SAM) Instructions and Codes of SAM are defined inductively by 

the following grammar. 

                           

                  

 

The expression lam (x, C) is called a lambda abstraction and app an application. To simplify the 

instruction set, we postulate that the primitive functions are unary.  We use I, I’, I1, I2,… for instructions and 

C, C’, C1, C2,… for codes. 

Definition 2 (Instructions and Codes of SAM) A set of Values is a subset of the set of instructions, 

defined by the following grammar. Each element of Values is called a value. 

 

                                       

 

Definition 2 (Transition of SAM) A configuration of SAM is represented as a pair (S, C) of a stack S, 

which is a sequence of value, and a code C. Computation of SAM is formulated as transition between 

configurations defined by the following rules. 

 

num                   

prim                  

app-lam                                

app-prim                         

 

where        

The rules num, prim, and lam intend that a value on the code component is pushed to the stack 

component as an actual parameter which will be bound later. 

The rule lam means that if you find an application instruction app at the head of the code component, 

then the actual parameter V is bound to the formal parameter x and the body of the function C'[x: = V] is 

evaluated. 

We show an example of translation sequence of SAM. 

Example 1 (Transition Sequence of SAM) Consider a code 

 

                            

 

The following is a transition sequence starting with a configuration of an empty stack and the code. We 

write the empty sequence as { }. 

 

                                   

                               (lam)  

                               (num) 

                        (app) 

                     (prim) 

                     (num) 
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                     (app-prim) 

                 (app-prim) 

  5              (app-prim) 

 

Next, we give a translation of SAM into the call-by-value lambda calculus. Before giving the definition of 

the translation, we introduce the call-by-value lambda calculus. 

3. The Call-by-Value Lambda Calculus 

In this section, we present the call-by-value lambda calculus. 

Definition 4 (Terms) Terms of the lambda calculus are defined inductively by the following grammar: 

 

                         

 

Definition 5 (Values) Values are defined inductively by the following grammar: 

 

                       

 

The set of values is a subset of the set of term. The values defined above are the terms that cannot be 

reduced by the call-by-value reduction introduced below. 

Definition 6 (Evaluation context) A context is a term with a hole [ ]. Evaluation contexts for 

call-by-value evaluation are contexts defined inductively by the following grammar: 

 

                                  

 

The following property on evaluation contexts is trivially derived. 

Proposition 1. For every term M, there exists an evaluation context E[ ] and a value V satisfying that 

 

        

 

Definition 7 (Call-by-value reduction) The call-by-value reduction is a binary relation between terms 

defined inductively by the following rules. 

 

beta-cbv                             

 

In this paper, we assume the successor function on natural numbers as primitive. 

 

prim                    where         

 

For example, a function symbol s which means successor function, it is defined as 

                                             

Since the left-hand side of the reduction rules are not overlapped each other, we have the uniqueness of 

the call-by-value reduction. 

We finish this section with an example of reduction sequence of the call-by-value lambda calculus. 

Example 2 (Reduction Sequence) We show a reduction sequence of a term                  . 
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              (beta-cbv) 

           (prim) 

 5       (prim) 

 

4. Translation of Call-by-Value Lambda Calculus into SAM 

The code components of SAM are assumed to be given as results of the following translation of lambda 

terms.  

Definition 8 (Translation of lambda terms to codes) 

A translation mapping [| M |] of lambda terms M can be given as 

 

       

       

       

                     

                     

 

Example 3 (Translation of Terms into Codes) Consider a lambda term                  , where s is a 

unary primitive function and 3 is a constant. The term is translated as follows. 

 

                    

                         

                        

                           . 

 

The translation maps a value of the call-by-value lambda calculus to a value of SAM. 

Proposition 2. For a value V of the call-by-value lambda calculus, [| V |] is a value of SAM. 

Definition 9 (Translation of Terms into Configurations) For a term M, a sequence of values V1,…, Vm, 

and a sequence of terms L1,…,Ln, we define a mapping 

 

                       

 

to a configuration inductively by the following rules. 

 

                                            

                                                        

                                                        

 

We can extend the translation on the evaluation contexts by adding the rule for the hole: 

 

                                               

1151 Volume 10, Number 10, October 2015

Journal of Software



  

Example 4 (Translation of Terms into Configurations) A term ((λx. (s (s x))) 3) is translated to a 

configuration as follows. 

 

                                                                                     

 

Another example of the translation is as follows. 

 

                                                                         

                                                                    

                                     

 

This translation maps evaluation contexts to a pair of stack's and code's subsequences. The following 

proposition is straight-forwardly proved by induction on context E[ ]. 

Proposition 3. For an evaluation context      and a value, there exist   
      

   and            , 

 

                                
      

                                

 

Proposition 4.  

 

                          
                           

 

Proof. We prove this proposition on the structure on the evaluation context E [ ]. 

Case of empty context [ ].  

 

                                                                     

 

Case of (W E[ ] ), where W is a value.  

 

                                                                

                                  
                               

 

because of the induction hypothesis. On the other hand, 

 

                                                           

 

Hence, 

 

                              
                              

 

Case of (E[ ] M), 

 

                              

                                  
                                   because 

of the induction hypothesis,                                
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End of Proof. 

Theorem 1 (Soundness of Translation) For any term M, L’1:⋯:L’n’, and values V’1:⋯:V’m’ , if M → M’, 

then it holds that 

 

                      
                       . 

 

Proof. M → M’ is derived from reduction rule beta-cbv or prim.  

Case of beta-cbv: 

 

                              
                               

 

This is derived as follows. We abbreviate L’1:⋯:L’n’ as L’n’  . 

                   =                               since Proposition 

3,                     
                       

                             
           

 :    :  )        (    :  ,     :  ) since Proposition 4=   [    ]  ,   . 

Case of prim: 

 

                           
                           where         

 

This is derived as follows. 

 

                                                       
                   

            
                    

        
                          

               where 

                
                                         

 

End of Proof. 

5. Simple Type System for SAM 

In this section, we give a simple type system to SAM. The point of the simple type system is that functions 

can be typed of function type. For example, a function of numbers to numbers is of type (num → num) and 

a function of such kind of functions to numbers of type ((num → num) → num). 

Definition 10 (Types of SAM) Types of SAM are defined inductively by the following grammar. 

 

             

 

Type num is a primitive type which represents the set of non-negative integers. Type (A → B) represents 

the set of functions whose domain is A and codomain B. 

Definition 11 (Typing of Codes) Type judgment Γ ⊢ C : A is defined inductively by the following rules, 

which means that C is of type A under type assignment Γ. 

A type assignment Γ is a mapping whose domain is a finite set of variables and codomain is the set of 

types. If a type assignment maps x1,…, xn to A1,…, An respectively, then we write it as {x1: A1}⋯{xn : An}. 
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        ,            ,  
      

     
  

                   

               
,  

           

                
 

 

where C1 : C2 is a concatenation of code sequences C1 and C2. 

Example 5. In Fig. 1 shows a typing derivation tree for the term lam(x, s : s : x : app : app) : 3 : app which 

appears in Example 1. 

 

 

               
     

                               
                 

                           
                             

    
      

                                
 

Fig. 1. Typing derivation tree. 

 

Definition 12 (Typing of SAM’s configurations) Typing of SAM's configurations is defined inductively 

by the following rules. A typing judgment for configurations is written as 

 

          

 

which is read as “configuration ( S , C ) is of type A.” 

 

              

        
 

 

where rev(S) means the reversed sequence of S. 

Reduction on SAM configurations preserves their typing during computation, which is called Subject 

Reduction Theorem. The following lemma is required in order to prove the subject reduction theorem: 

 If {x : A} Γ ⊢C : B and Γ ⊢ C’ : A, then it holds that Γ ⊢C[x := C’] : B.   

Proof. We prove this lemma by induction on structure on derivation of {x : A} Γ ⊢ C : B. 

Case C = n. Suppose that {x : A} Γ ⊢ C : B and Γ ⊢ C’ : A. 

 

                   

 

By the typing rule, we have Γ ⊢ n : num, that is, Γ ⊢ C[x ≔ C’] : B. Case C = x. Suppose that { x : A } ⊢  x : A 

and Γ’ ⊢ C’ : A. 

 

                    

 

From the assumption, it holds that Γ ⊢ C [x ≔ C’ ] : A. 

Case C = (C1 : C2 : app).  Suppose that 

 

                      and         

 

From the former assumption, 

 

                  and             
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By the induction hypothesis, 

 

                and              

 

Therefore, 

 

                  

 

Case C = lam(y, D). We may assume that y does not equal to x, because of bound variable convention. 

Suppose that 

 

                       and        
       

 

From the former assumption, 

 

            
        

 

By the induction hypothesis, 

 

       
              

 

and by the typing rule, it is derived that 

 

                        

 

Since 

 

                               

 

we have 

 

                  

End of Proof. 

Theorem 2 (Subject Reduction Theorem) If ( S, C ) → ( S’, C’ ) and ⊢ ( S, C ) : A, then it holds that ⊢( S’, 

C’ ) : A.  

Proof. This theorem is proved by structural induction on transition. 

Case of rule num. Suppose that ( S, n : C ) → ( n : S, C ) and ⊢ ( S, n : C ) : A. Since ⊢ ( S, n : C ) : A, we have 

⊢ ( rev( S ):n : C ) : A. Since rev(S) : n : C = rev(n : S) : C, we know ⊢ (rev(n : S ) : C ) : A. Hence, ⊢ (rev( n : S), 

C) : A. 

Case of rules prim and lam. We can prove these cases, similarly to the case of num, since we have 

 

                     

Case of rule app-lam. Suppose that   
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By typing rules, we know that code lam(x, C’) : V : app is typable. Therefore, there is some type B 

satisfying that  

 

             and       

 

On the other hand, by using Lemma 1, we know that ⊢ C’ [ x ≔ V ] : D. Then, replacing lam( x, C’ ) : V : app 

with this code, we obtain that 

 

                  

 

Case of rule app-prim is similar to this case. 

End of Proof. 

6. Extension of First-Class Continuations to SAM 

In this section, we formulate first-class continuations in the framework of SAM. Continuations have been 

understood as evaluation contexts in the call-by-value lambda calculus. In SAM, the evaluation contexts are 

equivalent to the configurations of SAM. In the terminology of reflective programming, the following two 

notions are fundamental. In order to introduce mechanism of first-class continuation into SAM, we should 

give them to SAM. 

Reification: lowering abstract machine's configuration down to object-level, 

Reflection: raising reified abstract machine's configuration upto meta-level. 

Programming language Scheme provides reification and reflection through 

call-with-current-continuation 

(abbrev. call/cc) and procedure call, respectively. If we remember that evaluation contexts are equivalent 

to continuations in the call-by-value lambda calculus, we can introduce call/cc into SAM as follows. 

Definition 13 (SAM with First-class Continuations) We define Simple Abstract Machine with 

First-class Continuations, SAMcall/cc by the following rules. 

 

abort                            

callcc                                                             

The former primitive, abort, represents a global exit, like Unix's exit, which is required for eliminating the 

current continuation. 

Definition 14 (Typing Rules for SAM callcc) We define typing for SAM callcc by the typing rules of SAM 

and the following typing rules for callcc and abort.  

 

                      

 

             

        
 

 

where ϕ is the top-level type, that is, the type of the whole code which SAM executes. This technique is also 

found in the lambda calculus with first-class continuations [9]. 

7. Comparison between SAM and SECD Machine 

In this section, we attempt a comparison between SAM and SECD machine. A configuration of SECD 
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machine is represented as a quadruple of four sequences: Stack, Environment, Code, and Dump, which is 

the origin of the word “SECD.” Computation of SECD machine is formulated as transition between 

configurations by the following rules. 

 

num                           

prim                         , 

ret                                          

var                                   , 

lam                                                   

app-lam                                                          

app-prim                                   

 

There are minor difference among the literatures [1][2][5][6][10]. In this paper, we follow the papers [1], 

[10] and use theirs terminology. Although N is firstly evaluated and then M is secondly done, in evaluation of 

(M N) in many literatures, we assume that M is firstly evaluated, then N is secondly done, and finally the 

value of N is bound to the formal parameter of M. 

There is a crucial difference about variable reference between SAM and SECD machine. In SAM, you 

formalize variable reference as substitutions. On the other hand, in SECD machine, you formulated it as the 

second component “Environment” of its configuration. Access of a variable to Environment E is provided by 

lookup(x, E) and update of binding of x to v by [x ↦ v] E. 

We can regard an environment in an evaluator of functional languages including SAM as a substitution 

whose application is delayed. In transition rule app-lam, 

 

                                                          

 

Body C’ of function closure lam(x, C )[ E’ ] is evaluated under environment ( x ↦ v ):E’. Since the rest of 

Code C should be evaluated under stack S and environment E, the triple of S, E and C is stored in the dump. 

The purpose of environments in SECD is to make rewriting of code sequences needless. If you observe 

code sequences in SECD's transition rules, we know that codes are truncated or replaced entirely.  In other 

words, codes appearing in SECD are subsequences which shares the tail part of the code sequence given 

initially.  You can represent such tail subsequence as its starting index.  Therefore, the third component C 

of each SECD configuration is not actually required to be represented as a sequence but an index, which is 

an important optimization in its implementation. 

8. Conclusion 

In this paper, we proposed the Simple Abstract Machine in which call-by-value evaluation strategy is 

incorporated, and give the simple type system to it. Further, we showed an extension of SAM by adding 

first-class continuations. In a previous version of this paper, SAM was proposed and presented the 

extension of adding first-class continuation. This paper is a further improved version. In this paper, we 

develop the fundamental mathematical properties such as soundness of the translation of the lambda 

calculus into SAM, which was not established in the paper. 

9. Future Works 

We present several future directions of our work. 

In this paper, we gave an informal explanation of how to simplify SECD machine to get SAM. We apply 
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such simplification more formally to the other kinds of abstract machine, like FAM [12] and LAM [7]. 

SAM is based on call-by-value evaluation strategy. On the other hand, Krivine machine [13] is known as 

an abstract machine based on call-by-name evaluation strategy. 

 

                          

                                       

                 where                     

 

In Krivine machine, a variable environment provides variable reference. If you use substitution in the 

SECD machine similarly to SAM, then we can simplify it as 

 

                   

                           

 

A major difference between SAM and the simplified Krivine machine is that you formulate the former 

code as a sequence, however the latter as a tree structure. We may say that the Simple Abstract Machine is 

much nearer to abstract machine implementation than the Krivine machine. 

Many researchers [9], [14]–[17] have studied the duality between call-by-value and call-by-name 

evaluation strategies. A dual version of call-by-value SAM is also to be studied in future. 
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