doi: 10.17706/jsw.17.6.269-281
AIADA: Accuracy Impact Assessment of Deprecated Python API Usages on Deep Learning Models
Abstract—TensorFlow is an end-to-end open-source machine learning platform including various tools, libraries, and community resources. It supports users to use many mainstream programming languages including Python. TensorFlow contains multiple abstraction layers, with APIs play significant roles in every layers. In the version iteration of TensorFlow platform development, with the release of new TensorFlow versions, because of functionality evolution, or security and performance-related changes, some APIs eventually become unnecessary. These issues cause APIs to deprecate and influence the accuracy of deep learning models results. Prior studies have investigated API evolution and its potential impact on projects. However, their studies mainly focus on API evolution instead of API deprecation, and they do not find out how the evolution affects results of deep learning models in TensorFlow. Therefore, we present a research-based prototype tool called AIADA and apply it to different revisions of the TensorFlow platform projects code for characterizing deprecated APIs. Based on the data mined by AIADA, we develop a quantitative assessment of deprecated Python APIs usages on deep learning models accuracy. We first count the amount of TensorFlow Python APIs that are deprecated, finding out that with the development of TensorFlow version, the number of deprecated APIs increases constantly. Second, we discuss the reason behind TensorFlow Python APIs become deprecated, discover that name change, weed out, and compatibility issue lead to the main cause of deprecation. Finally, we construct a deep learning project as the comparative experiment. After comparing the results between deep learning model with TensorFlow deprecated APIs and without deprecated APIs, we conclude that using deprecated APIs will cause a 10% loss on efficiency and accuracy of deep learning model.
Index Terms—Machine learning, deep learning, deprecated API, TensorFlow.
Cite: Haochen Zou, "AIADA: Accuracy Impact Assessment of Deprecated Python API Usages on Deep Learning Models," Journal of Software vol. 17, no. 6, pp. 269-281, 2022.
Copyright © 2022 by the authors. This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0)
General Information
ISSN: 1796-217X (Online)
Abbreviated Title: J. Softw.
Frequency: Quarterly
APC: 500USD
DOI: 10.17706/JSW
Editor-in-Chief: Prof. Antanas Verikas
Executive Editor: Ms. Cecilia Xie
Abstracting/ Indexing: DBLP, EBSCO,
CNKI, Google Scholar, ProQuest,
INSPEC(IET), ULRICH's Periodicals
Directory, WorldCat, etcE-mail: jsweditorialoffice@gmail.com
-
Oct 22, 2024 News!
Vol 19, No 3 has been published with online version [Click]
-
Jan 04, 2024 News!
JSW will adopt Article-by-Article Work Flow
-
Apr 01, 2024 News!
Vol 14, No 4- Vol 14, No 12 has been indexed by IET-(Inspec) [Click]
-
Apr 01, 2024 News!
Papers published in JSW Vol 18, No 1- Vol 18, No 6 have been indexed by DBLP [Click]
-
Jun 12, 2024 News!
Vol 19, No 2 has been published with online version [Click]