doi: 10.4304/jsw.5.12.1371-1377
Feature Selection via Correlation Coefficient Clustering
Abstract—Feature selection is a fundamental problem in machine learning and data mining. How to choose the most problem-related features from a set of collected features is essential. In this paper, a novel method using correlation coefficient clustering in removing similar/redundant features is proposed. The collected features are grouped into clusters by measuring their correlation coefficient values. The most class-dependent feature in each cluster is retained while others in the same cluster are removed. Thus, the most class-related and mutually unrelated features are identified. The proposed method was applied to two datasets: the disordered protein dataset and the Arrhythmia (ARR) dataset. The experimental results show that the method is superior to other feature selection methods in speed and/or accuracy. Detail discussions are given in the paper.
Index Terms—Feature Selection, Clustering, Correlation Coefficient, Support Vector Machines (SVMs), Machine Learning, Classification.
Cite: Hui-Huang Hsu, Cheng-Wei Hsieh, "Feature Selection via Correlation Coefficient Clustering," Journal of Software vol. 5, no. 12, pp. 1371-1377, 2010.
General Information
ISSN: 1796-217X (Online)
Abbreviated Title: J. Softw.
Frequency: Quarterly
APC: 500USD
DOI: 10.17706/JSW
Editor-in-Chief: Prof. Antanas Verikas
Executive Editor: Ms. Cecilia Xie
Abstracting/ Indexing: DBLP, EBSCO,
CNKI, Google Scholar, ProQuest,
INSPEC(IET), ULRICH's Periodicals
Directory, WorldCat, etcE-mail: jsweditorialoffice@gmail.com
-
Oct 22, 2024 News!
Vol 19, No 3 has been published with online version [Click]
-
Jan 04, 2024 News!
JSW will adopt Article-by-Article Work Flow
-
Apr 01, 2024 News!
Vol 14, No 4- Vol 14, No 12 has been indexed by IET-(Inspec) [Click]
-
Apr 01, 2024 News!
Papers published in JSW Vol 18, No 1- Vol 18, No 6 have been indexed by DBLP [Click]
-
Jun 12, 2024 News!
Vol 19, No 2 has been published with online version [Click]