doi: 10.4304/jsw.9.9.2361-2365
An Algorithm for Mining Frequent Itemsets from Library Big Data
Abstract—Frequent itemset mining plays an important part in college library data analysis. Because there are a lot of redundant data in library database, the mining process may generate intra-property frequent itemsets, and this hinders its efficiency significantly. To address this issue, we propose an improved FP-Growth algorithm we call RFP-Growth to avoid generating intra-property frequent itemsets, and to further boost its efficiency, implement its MapReduce version with additional prune strategy. The proposed algorithm was tested using both synthetic and real world library data, and the experimental results showed that the proposed algorithm outperformed existing algorithms.
Index Terms—big data; frequent itemset; data mining; library
Cite: Xingjian Li, "An Algorithm for Mining Frequent Itemsets from Library Big Data," Journal of Software vol. 9, no. 9, pp. 2361-2365, 2014.
General Information
ISSN: 1796-217X (Online)
Abbreviated Title: J. Softw.
Frequency: Quarterly
APC: 500USD
DOI: 10.17706/JSW
Editor-in-Chief: Prof. Antanas Verikas
Executive Editor: Ms. Cecilia Xie
Abstracting/ Indexing: DBLP, EBSCO,
CNKI, Google Scholar, ProQuest,
INSPEC(IET), ULRICH's Periodicals
Directory, WorldCat, etcE-mail: jsweditorialoffice@gmail.com
-
Oct 22, 2024 News!
Vol 19, No 3 has been published with online version [Click]
-
Jan 04, 2024 News!
JSW will adopt Article-by-Article Work Flow
-
Apr 01, 2024 News!
Vol 14, No 4- Vol 14, No 12 has been indexed by IET-(Inspec) [Click]
-
Apr 01, 2024 News!
Papers published in JSW Vol 18, No 1- Vol 18, No 6 have been indexed by DBLP [Click]
-
Jun 12, 2024 News!
Vol 19, No 2 has been published with online version [Click]