doi: 10.4304/jsw.9.2.274-279
Feature-based Sentiment Analysis Approach for Product Reviews
2Grasslands Research Centre, New Zealand
Abstract—The researches and applications of sentiment analysis become increasingly important with the rapid growth of online reviews. But traditional sentiment analysis models have been lacking in concern on the modifying relationship between words for sentiment analysis of Chinese reviews, and limit the development of opinion mining. This paper proposes a feature-based vector model and a novel weighting algorithm for sentiment analysis of Chinese product reviews. It considers both modifying relationships between words and punctuations in review texts. Specifically, it can classify reviews into two categories, i.e., positive and negative, and can also represent the sentiment strength by adverb of degree. Moreover, a novel feature extraction method based on dependency parsing is presented to identify the corresponding aspects that opinions words modify. We conduct some experiments to evaluate our algorithms, and demonstrate that the proposed approaches are efficient and promising.
Index Terms—sentiment analysis, dependency parsing, polarity classification
Cite: Hanshi Wang, Lizhen Liu, Wei Song, Jingli Lu, "Feature-based Sentiment Analysis Approach for Product Reviews," Journal of Software vol. 9, no. 2, pp. 274-279, 2014.
General Information
ISSN: 1796-217X (Online)
Abbreviated Title: J. Softw.
Frequency: Quarterly
APC: 500USD
DOI: 10.17706/JSW
Editor-in-Chief: Prof. Antanas Verikas
Executive Editor: Ms. Cecilia Xie
Abstracting/ Indexing: DBLP, EBSCO,
CNKI, Google Scholar, ProQuest,
INSPEC(IET), ULRICH's Periodicals
Directory, WorldCat, etcE-mail: jsweditorialoffice@gmail.com
-
Oct 22, 2024 News!
Vol 19, No 3 has been published with online version [Click]
-
Jan 04, 2024 News!
JSW will adopt Article-by-Article Work Flow
-
Apr 01, 2024 News!
Vol 14, No 4- Vol 14, No 12 has been indexed by IET-(Inspec) [Click]
-
Apr 01, 2024 News!
Papers published in JSW Vol 18, No 1- Vol 18, No 6 have been indexed by DBLP [Click]
-
Jun 12, 2024 News!
Vol 19, No 2 has been published with online version [Click]