doi: 10.4304/jsw.6.11.2159-2166
Information Security Risk Assessment Based on Information Measure and Fuzzy Clustering
Abstract—To address the problems of lack of training data and difficult to find optimal value in information security risk assessment, this paper applying a new information measure method and fuzzy clustering in information security risk assessment. The new method quantifies risk factors of all data and the dependence degree of safety with the mutual information computing. Then search optimal points in each degree of risk as original center points of Kmeans clustering algorithm, and use the K-means clustering algorithm for data classification. This method has less computation, and it can overcome the K-means’s shortcoming of sensitive to initial value and problem of nonlinear and complexity of information security risk assessment. Experimental results show the effectiveness of our method.
Index Terms—Information security, Risk assessment, Information Measure, Fuzzy Clustering
Cite: Guo-hong Gao, Xue-yong Li, Bao-jian Zhang, Wen-xian Xiao, "Information Security Risk Assessment Based on Information Measure and Fuzzy Clustering," Journal of Software vol. 6, no. 11, pp. 2159-2166, 2011.
General Information
ISSN: 1796-217X (Online)
Abbreviated Title: J. Softw.
Frequency: Quarterly
APC: 500USD
DOI: 10.17706/JSW
Editor-in-Chief: Prof. Antanas Verikas
Executive Editor: Ms. Cecilia Xie
Abstracting/ Indexing: DBLP, EBSCO,
CNKI, Google Scholar, ProQuest,
INSPEC(IET), ULRICH's Periodicals
Directory, WorldCat, etcE-mail: jsweditorialoffice@gmail.com
-
Oct 22, 2024 News!
Vol 19, No 3 has been published with online version [Click]
-
Jan 04, 2024 News!
JSW will adopt Article-by-Article Work Flow
-
Apr 01, 2024 News!
Vol 14, No 4- Vol 14, No 12 has been indexed by IET-(Inspec) [Click]
-
Apr 01, 2024 News!
Papers published in JSW Vol 18, No 1- Vol 18, No 6 have been indexed by DBLP [Click]
-
Jun 12, 2024 News!
Vol 19, No 2 has been published with online version [Click]