doi: 10.4304/jsw.6.10.2036-2042
Multi-objective Optimization of Fuzzy Parallel Machines Scheduling Problem Using Nondominated Genetic Algorithms
Abstract—A kind of unrelated parallel machines scheduling problem is discussed. The memberships of fuzzy due dates denote the grades of satisfaction with respect to completion times with jobs. Objectives of scheduling are to maximize the minimum grade of satisfaction while makespan is minimized in the meantime. Two kind of genetic algorithms are employed to search optimal solution set of the problem. Both Niche Pareto Genetic Algorithm (NPGA) and Nondominated Sorting Genetic Algorithm (NSGA-II) can find the Pareto optimal solutions. Numerical simulation illustrates that NSGA-II has better results than NPGA.
Index Terms—parallel machines scheduling, fuzzy due-date, NPGA, NSGA-II
Cite: Xie Yuan, "Multi-objective Optimization of Fuzzy Parallel Machines Scheduling Problem Using Nondominated Genetic Algorithms," Journal of Software vol. 6, no. 10, pp. 2036-2042, 2011.
General Information
ISSN: 1796-217X (Online)
Abbreviated Title: J. Softw.
Frequency: Quarterly
APC: 500USD
DOI: 10.17706/JSW
Editor-in-Chief: Prof. Antanas Verikas
Executive Editor: Ms. Cecilia Xie
Abstracting/ Indexing: DBLP, EBSCO,
CNKI, Google Scholar, ProQuest,
INSPEC(IET), ULRICH's Periodicals
Directory, WorldCat, etcE-mail: jsweditorialoffice@gmail.com
-
Oct 22, 2024 News!
Vol 19, No 3 has been published with online version [Click]
-
Jan 04, 2024 News!
JSW will adopt Article-by-Article Work Flow
-
Apr 01, 2024 News!
Vol 14, No 4- Vol 14, No 12 has been indexed by IET-(Inspec) [Click]
-
Apr 01, 2024 News!
Papers published in JSW Vol 18, No 1- Vol 18, No 6 have been indexed by DBLP [Click]
-
Jun 12, 2024 News!
Vol 19, No 2 has been published with online version [Click]