doi: 10.4304/jsw.6.8.1445-1451
Unsupervised Posture Modeling and Recognition based on Gaussian Mixture Model and EM Estimation
Abstract—In this paper, we proposed an unsupervised posture modeling method based on Gaussian Mixture Model (GMM). Specifically, each learning posture is described based on its movement features by a set of spatial-temporal interest points (STIPs), salient postures are then clustered from these training samples by an unsupervised algorithm, here we give the comparison of four candidate classification methods and find the optimal one. Furthermore, each clustered posture type is modeled with GMM according to Expectation Maximization (EM) estimation. The experiment results proved that our method can effectively model postures and can be used for posture recognition in video.
Index Terms—NERF C-means; posture modeling; posture recognition; GMM
Cite: Xijun Zhu, Chuanxu Wang, "Unsupervised Posture Modeling and Recognition based on Gaussian Mixture Model and EM Estimation," Journal of Software vol. 6, no. 8, pp. 1445-1451, 2011.
General Information
ISSN: 1796-217X (Online)
Abbreviated Title: J. Softw.
Frequency: Quarterly
APC: 500USD
DOI: 10.17706/JSW
Editor-in-Chief: Prof. Antanas Verikas
Executive Editor: Ms. Cecilia Xie
Abstracting/ Indexing: DBLP, EBSCO,
CNKI, Google Scholar, ProQuest,
INSPEC(IET), ULRICH's Periodicals
Directory, WorldCat, etcE-mail: jsweditorialoffice@gmail.com
-
Oct 22, 2024 News!
Vol 19, No 3 has been published with online version [Click]
-
Jan 04, 2024 News!
JSW will adopt Article-by-Article Work Flow
-
Apr 01, 2024 News!
Vol 14, No 4- Vol 14, No 12 has been indexed by IET-(Inspec) [Click]
-
Apr 01, 2024 News!
Papers published in JSW Vol 18, No 1- Vol 18, No 6 have been indexed by DBLP [Click]
-
Jun 12, 2024 News!
Vol 19, No 2 has been published with online version [Click]