doi: 10.4304/jsw.6.7.1345-1352
Manifold Learning Based Gait Feature Reduction and Recognition
2Xi’an High Technology Inst., Xi’an, China
Abstract—The moving objectives’ images are in tensor format in reality. That using for reference the thought of tensor space dimension reduction to gain the optimal gait characters with low dimension inaugurate a new gait recognition way. A novel gait expression and recognition algorithm based on the tensor space is introduced here. It is a tensor space learning algorithm that could investigate the inherent geometrical structure of the data manifold. The within-class and the between-class similarity graphs are respectively defined so as to preserve the local structure of the manifold and the global data information. It improves the ability of gait data reconstructing and the recognizing efficiency. The optimization problem of finding the optimal tensor subspace is deduced to an iteratively computation problem about resolving the generalized eigenvectors. The optimal tensor is used to express the gait character and recognize the individual. And it reduced the gait character dimension, at the same time the storage and calculation cost were cut down. The experiments with the SOTON gait database demonstrated the validity of the proposed method. And the comparison among the tensor subspace analysis, the principal component analysis, the linear discriminate analysis and proposed method showed that the recognition performance of the our improved algorithm outperformed others.
Index Terms—gait character extraction, gait recognition, tensor space mapping, dimension reduction
Cite: Suyuan Wei, Chao Ning, Youxing Gong, "Manifold Learning Based Gait Feature Reduction and Recognition," Journal of Software vol. 6, no. 7, pp. 1345-1352, 2011.
General Information
ISSN: 1796-217X (Online)
Abbreviated Title: J. Softw.
Frequency: Quarterly
APC: 500USD
DOI: 10.17706/JSW
Editor-in-Chief: Prof. Antanas Verikas
Executive Editor: Ms. Cecilia Xie
Abstracting/ Indexing: DBLP, EBSCO,
CNKI, Google Scholar, ProQuest,
INSPEC(IET), ULRICH's Periodicals
Directory, WorldCat, etcE-mail: jsweditorialoffice@gmail.com
-
Oct 22, 2024 News!
Vol 19, No 3 has been published with online version [Click]
-
Jan 04, 2024 News!
JSW will adopt Article-by-Article Work Flow
-
Apr 01, 2024 News!
Vol 14, No 4- Vol 14, No 12 has been indexed by IET-(Inspec) [Click]
-
Apr 01, 2024 News!
Papers published in JSW Vol 18, No 1- Vol 18, No 6 have been indexed by DBLP [Click]
-
Jun 12, 2024 News!
Vol 19, No 2 has been published with online version [Click]