doi: 10.4304/jsw.6.5.873-879
An Improved Fuzzy C-means Clustering Algorithm based on PSO
Abstract—To deal with the problem of premature convergence of the fuzzy c-means clustering algorithm based on particle swarm optimization, which is sensitive to noise and less effective when handling the data set that dimensions greater than the number of samples, a novel fuzzy c-means clustering method based on the enhanced Particle Swarm Optimization algorithm is presented. Firstly, this approach distributes the memberships on the basis of the distance between the sample and cluster centers, making memberships meet the constraints of FCM. Then, optimization strategy is presented that the optimal particle can be guided to close the group effectively. The experimental results show the proposed method significantly improves the clustering effect of the PSO-based FCM that encoded in membership.
Index Terms—clustering, particle swarm algorithm, fuzzy C means, membership, constraint strategy
Cite: Qiang Niu, Xinjian Huang, "An Improved Fuzzy C-means Clustering Algorithm based on PSO," Journal of Software vol. 6, no. 5, pp. 873-879, 2011.
General Information
ISSN: 1796-217X (Online)
Abbreviated Title: J. Softw.
Frequency: Quarterly
APC: 500USD
DOI: 10.17706/JSW
Editor-in-Chief: Prof. Antanas Verikas
Executive Editor: Ms. Cecilia Xie
Abstracting/ Indexing: DBLP, EBSCO,
CNKI, Google Scholar, ProQuest,
INSPEC(IET), ULRICH's Periodicals
Directory, WorldCat, etcE-mail: jsweditorialoffice@gmail.com
-
Oct 22, 2024 News!
Vol 19, No 3 has been published with online version [Click]
-
Jan 04, 2024 News!
JSW will adopt Article-by-Article Work Flow
-
Apr 01, 2024 News!
Vol 14, No 4- Vol 14, No 12 has been indexed by IET-(Inspec) [Click]
-
Apr 01, 2024 News!
Papers published in JSW Vol 18, No 1- Vol 18, No 6 have been indexed by DBLP [Click]
-
Jun 12, 2024 News!
Vol 19, No 2 has been published with online version [Click]